@@ -11,21 +11,17 @@ kernelspec:
1111 name : python3
1212---
1313
14-
14+ (input_output)=
1515# Input-Output Models
1616
17- ## Overview
18-
19- The following figure illustrates a network of linkages between 71 sectors obtained from the US Bureau of Economic Analysis’s
20- 2019 Input-Output Accounts Data.
17+ ``` {contents} Contents
18+ :depth: 2
19+ ```
2120
2221``` {code-cell} ipython3
23- ---
24- jupyter:
25- outputs_hidden: true
26- source_hidden: true
27- ---
28- pip install --upgrade quantecon_book_networks
22+ :tags: [hide-output]
23+
24+ !pip install --upgrade quantecon_book_networks quantecon pandas_datareader
2925```
3026
3127In this lecture, we will need the following library.
@@ -37,22 +33,29 @@ import networkx as nx
3733```
3834
3935``` {code-cell} ipython3
40- # hide
36+ :tags: [ hide-input]
4137
4238import quantecon as qe
4339import quantecon_book_networks
4440import quantecon_book_networks.input_output as qbn_io
4541import quantecon_book_networks.plotting as qbn_plt
4642import quantecon_book_networks.data as qbn_data
47- ch2_data = qbn_data.production()
4843import matplotlib.pyplot as plt
4944import matplotlib.cm as cm
5045import matplotlib.colors as plc
5146from matplotlib import cm
5247quantecon_book_networks.config("matplotlib")
5348import matplotlib as mpl
5449mpl.rcParams.update(mpl.rcParamsDefault)
50+ ```
51+
52+ ## Overview
5553
54+ The following figure illustrates a network of linkages between 71 sectors obtained from the US Bureau of Economic Analysis’s
55+ 2019 Input-Output Accounts Data.
56+
57+ ``` {code-cell} ipython3
58+ ch2_data = qbn_data.production()
5659codes_71 = ch2_data['us_sectors_71']['codes']
5760A_71 = ch2_data['us_sectors_71']['adjacency_matrix']
5861X_71 = ch2_data['us_sectors_71']['total_industry_sales']
@@ -74,8 +77,6 @@ qbn_plt.plot_graph(A_71, X_71, ax, codes_71,
7477plt.show()
7578```
7679
77- +++
78-
7980An arrow from $i$ to $j$ implies that sector $i$ supplies some of its output as raw material to sector $j$.
8081
8182Economies are characterised by many such complex and interdependent multisector production networks.
@@ -86,7 +87,7 @@ This model's key aspect is its simplicity.
8687
8788In this lecture, we introduce the standard input-ouput model and approach it as a [ linear programming] (link to lpp lecture) problem.
8889
89- +++
90+ +++
9091
9192## Input Output Analysis
9293
@@ -117,7 +118,7 @@ To illustrate ideas, we begin by setting $n =2$.
117118The following is a simple illustration of this network.
118119
119120``` {code-cell} ipython3
120- :tags: [hide_input ]
121+ :tags: [hide-input ]
121122
122123G = nx.DiGraph()
123124
@@ -146,8 +147,6 @@ plt.text(0.955,-0.05, r'$x_{12}$')
146147plt.show()
147148```
148149
149- +++
150-
151150## Feasible allocations must satisfy
152151
153152$$
333332
334333where $L$ is a vector of labor services used in each industry.
335334
335+ ```{code-cell} ipython3
336+
337+ ```
0 commit comments