A lightweight and modular object detection framework powered by Detectron2, focusing on easy training and deployment.
- 🎯 Pre-configured Detectron2 models (Faster R-CNN, RetinaNet)
- 🔄 Simple data pipeline for custom datasets
- 📊 Built-in evaluation metrics (COCO metrics, RMSE, MSE, PSNR)
- 🚀 Easy model configuration and training
# Install dependencies pip install -r requirements.txt # Train a model from Model.modelling.detectron2 import Detectron2 model = Detectron2( model="COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml", max_iter=500, base_lr=0.00025 ) model.train()ML/ ├── Model/ │ ├── modelling/ # Core model implementations │ ├── dataset/ # Dataset handling utilities │ └── metrics/ # Evaluation metrics └── tests/ # Unit tests - Models: Faster R-CNN, RetinaNet
- Metrics: COCO AP, RMSE, MSE, PSNR
- Data formats: COCO-style annotations
- GPU acceleration with CUDA
Apache License 2.0