|
| 1 | +import torch |
| 2 | +from torch import nn, optim |
| 3 | +import os |
| 4 | +import config |
| 5 | +from torch.utils.data import DataLoader |
| 6 | +from tqdm import tqdm |
| 7 | +from sklearn.metrics import cohen_kappa_score |
| 8 | +from efficientnet_pytorch import EfficientNet |
| 9 | +from dataset import DRDataset |
| 10 | +from torchvision.utils import save_image |
| 11 | +from utils import ( |
| 12 | + load_checkpoint, |
| 13 | + save_checkpoint, |
| 14 | + check_accuracy, |
| 15 | + make_prediction, |
| 16 | + get_csv_for_blend, |
| 17 | +) |
| 18 | + |
| 19 | + |
| 20 | +def train_one_epoch(loader, model, optimizer, loss_fn, scaler, device): |
| 21 | + losses = [] |
| 22 | + loop = tqdm(loader) |
| 23 | + for batch_idx, (data, targets, _) in enumerate(loop): |
| 24 | + # save examples and make sure they look ok with the data augmentation, |
| 25 | + # tip is to first set mean=[0,0,0], std=[1,1,1] so they look "normal" |
| 26 | + #save_image(data, f"hi_{batch_idx}.png") |
| 27 | + |
| 28 | + data = data.to(device=device) |
| 29 | + targets = targets.to(device=device) |
| 30 | + |
| 31 | + # forward |
| 32 | + with torch.cuda.amp.autocast(): |
| 33 | + scores = model(data) |
| 34 | + loss = loss_fn(scores, targets.unsqueeze(1).float()) |
| 35 | + |
| 36 | + losses.append(loss.item()) |
| 37 | + |
| 38 | + # backward |
| 39 | + optimizer.zero_grad() |
| 40 | + scaler.scale(loss).backward() |
| 41 | + scaler.step(optimizer) |
| 42 | + scaler.update() |
| 43 | + loop.set_postfix(loss=loss.item()) |
| 44 | + |
| 45 | + print(f"Loss average over epoch: {sum(losses)/len(losses)}") |
| 46 | + |
| 47 | + |
| 48 | +def main(): |
| 49 | + train_ds = DRDataset( |
| 50 | + images_folder="train/images_preprocessed_1000/", |
| 51 | + path_to_csv="train/trainLabels.csv", |
| 52 | + transform=config.val_transforms, |
| 53 | + ) |
| 54 | + val_ds = DRDataset( |
| 55 | + images_folder="train/images_preprocessed_1000/", |
| 56 | + path_to_csv="train/valLabels.csv", |
| 57 | + transform=config.val_transforms, |
| 58 | + ) |
| 59 | + test_ds = DRDataset( |
| 60 | + images_folder="test/images_preprocessed_1000", |
| 61 | + path_to_csv="train/trainLabels.csv", |
| 62 | + transform=config.val_transforms, |
| 63 | + train=False, |
| 64 | + ) |
| 65 | + test_loader = DataLoader( |
| 66 | + test_ds, batch_size=config.BATCH_SIZE, num_workers=6, shuffle=False |
| 67 | + ) |
| 68 | + train_loader = DataLoader( |
| 69 | + train_ds, |
| 70 | + batch_size=config.BATCH_SIZE, |
| 71 | + num_workers=config.NUM_WORKERS, |
| 72 | + pin_memory=config.PIN_MEMORY, |
| 73 | + shuffle=False, |
| 74 | + ) |
| 75 | + val_loader = DataLoader( |
| 76 | + val_ds, |
| 77 | + batch_size=config.BATCH_SIZE, |
| 78 | + num_workers=2, |
| 79 | + pin_memory=config.PIN_MEMORY, |
| 80 | + shuffle=False, |
| 81 | + ) |
| 82 | + loss_fn = nn.MSELoss() |
| 83 | + |
| 84 | + model = EfficientNet.from_pretrained("efficientnet-b3") |
| 85 | + model._fc = nn.Linear(1536, 1) |
| 86 | + model = model.to(config.DEVICE) |
| 87 | + optimizer = optim.Adam(model.parameters(), lr=config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY) |
| 88 | + scaler = torch.cuda.amp.GradScaler() |
| 89 | + |
| 90 | + if config.LOAD_MODEL and config.CHECKPOINT_FILE in os.listdir(): |
| 91 | + load_checkpoint(torch.load(config.CHECKPOINT_FILE), model, optimizer, config.LEARNING_RATE) |
| 92 | + |
| 93 | + # Run after training is done and you've achieved good result |
| 94 | + # on validation set, then run train_blend.py file to use information |
| 95 | + # about both eyes concatenated |
| 96 | + get_csv_for_blend(val_loader, model, "../train/val_blend.csv") |
| 97 | + get_csv_for_blend(train_loader, model, "../train/train_blend.csv") |
| 98 | + get_csv_for_blend(test_loader, model, "../train/test_blend.csv") |
| 99 | + make_prediction(model, test_loader, "submission_.csv") |
| 100 | + import sys |
| 101 | + sys.exit() |
| 102 | + #make_prediction(model, test_loader) |
| 103 | + |
| 104 | + for epoch in range(config.NUM_EPOCHS): |
| 105 | + train_one_epoch(train_loader, model, optimizer, loss_fn, scaler, config.DEVICE) |
| 106 | + |
| 107 | + # get on validation |
| 108 | + preds, labels = check_accuracy(val_loader, model, config.DEVICE) |
| 109 | + print(f"QuadraticWeightedKappa (Validation): {cohen_kappa_score(labels, preds, weights='quadratic')}") |
| 110 | + |
| 111 | + # get on train |
| 112 | + #preds, labels = check_accuracy(train_loader, model, config.DEVICE) |
| 113 | + #print(f"QuadraticWeightedKappa (Training): {cohen_kappa_score(labels, preds, weights='quadratic')}") |
| 114 | + |
| 115 | + if config.SAVE_MODEL: |
| 116 | + checkpoint = { |
| 117 | + "state_dict": model.state_dict(), |
| 118 | + "optimizer": optimizer.state_dict(), |
| 119 | + } |
| 120 | + save_checkpoint(checkpoint, filename=f"b3_{epoch}.pth.tar") |
| 121 | + |
| 122 | + |
| 123 | + |
| 124 | +if __name__ == "__main__": |
| 125 | + main() |
0 commit comments