Skip to content

pydantic_ai.mcp

MCPError

Bases: RuntimeError

Raised when an MCP server returns an error response.

This exception wraps error responses from MCP servers, following the ErrorData schema from the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100
class MCPError(RuntimeError):  """Raised when an MCP server returns an error response.  This exception wraps error responses from MCP servers, following the ErrorData schema  from the MCP specification.  """ message: str  """The error message.""" code: int  """The error code returned by the server.""" data: dict[str, Any] | None  """Additional information about the error, if provided by the server.""" def __init__(self, message: str, code: int, data: dict[str, Any] | None = None): self.message = message self.code = code self.data = data super().__init__(message) @classmethod def from_mcp_sdk(cls, error: mcp_exceptions.McpError) -> MCPError:  """Create an MCPError from an MCP SDK McpError.  Args:  error: An McpError from the MCP SDK.  """ # Extract error data from the McpError.error attribute error_data = error.error return cls(message=error_data.message, code=error_data.code, data=error_data.data) def __str__(self) -> str: if self.data: return f'{self.message} (code: {self.code}, data: {self.data})' return f'{self.message} (code: {self.code})' 

message instance-attribute

message: str = message 

The error message.

code instance-attribute

code: int = code 

The error code returned by the server.

data instance-attribute

data: dict[str, Any] | None = data 

Additional information about the error, if provided by the server.

from_mcp_sdk classmethod

from_mcp_sdk(error: McpError) -> MCPError 

Create an MCPError from an MCP SDK McpError.

Parameters:

Name Type Description Default
error McpError

An McpError from the MCP SDK.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
86 87 88 89 90 91 92 93 94 95
@classmethod def from_mcp_sdk(cls, error: mcp_exceptions.McpError) -> MCPError:  """Create an MCPError from an MCP SDK McpError.  Args:  error: An McpError from the MCP SDK.  """ # Extract error data from the McpError.error attribute error_data = error.error return cls(message=error_data.message, code=error_data.code, data=error_data.data) 

ResourceAnnotations dataclass

Additional properties describing MCP entities.

See the resource annotations in the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
@dataclass(repr=False, kw_only=True) class ResourceAnnotations:  """Additional properties describing MCP entities.  See the [resource annotations in the MCP specification](https://modelcontextprotocol.io/specification/2025-06-18/server/resources#annotations).  """ audience: list[mcp_types.Role] | None = None  """Intended audience for this entity.""" priority: Annotated[float, Field(ge=0.0, le=1.0)] | None = None  """Priority level for this entity, ranging from 0.0 to 1.0.""" __repr__ = _utils.dataclasses_no_defaults_repr @classmethod def from_mcp_sdk(cls, mcp_annotations: mcp_types.Annotations) -> ResourceAnnotations:  """Convert from MCP SDK Annotations to ResourceAnnotations.  Args:  mcp_annotations: The MCP SDK annotations object.  """ return cls(audience=mcp_annotations.audience, priority=mcp_annotations.priority) 

audience class-attribute instance-attribute

audience: list[Role] | None = None 

Intended audience for this entity.

priority class-attribute instance-attribute

priority: Annotated[float, Field(ge=0.0, le=1.0)] | None = ( None ) 

Priority level for this entity, ranging from 0.0 to 1.0.

from_mcp_sdk classmethod

from_mcp_sdk( mcp_annotations: Annotations, ) -> ResourceAnnotations 

Convert from MCP SDK Annotations to ResourceAnnotations.

Parameters:

Name Type Description Default
mcp_annotations Annotations

The MCP SDK annotations object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
118 119 120 121 122 123 124 125
@classmethod def from_mcp_sdk(cls, mcp_annotations: mcp_types.Annotations) -> ResourceAnnotations:  """Convert from MCP SDK Annotations to ResourceAnnotations.  Args:  mcp_annotations: The MCP SDK annotations object.  """ return cls(audience=mcp_annotations.audience, priority=mcp_annotations.priority) 

BaseResource dataclass

Bases: ABC

Base class for MCP resources.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
@dataclass(repr=False, kw_only=True) class BaseResource(ABC):  """Base class for MCP resources.""" name: str  """The programmatic name of the resource.""" title: str | None = None  """Human-readable title for UI contexts.""" description: str | None = None  """A description of what this resource represents.""" mime_type: str | None = None  """The MIME type of the resource, if known.""" annotations: ResourceAnnotations | None = None  """Optional annotations for the resource.""" metadata: dict[str, Any] | None = None  """Optional metadata for the resource.""" __repr__ = _utils.dataclasses_no_defaults_repr 

name instance-attribute

name: str 

The programmatic name of the resource.

title class-attribute instance-attribute

title: str | None = None 

Human-readable title for UI contexts.

description class-attribute instance-attribute

description: str | None = None 

A description of what this resource represents.

mime_type class-attribute instance-attribute

mime_type: str | None = None 

The MIME type of the resource, if known.

annotations class-attribute instance-attribute

annotations: ResourceAnnotations | None = None 

Optional annotations for the resource.

metadata class-attribute instance-attribute

metadata: dict[str, Any] | None = None 

Optional metadata for the resource.

Resource dataclass

Bases: BaseResource

A resource that can be read from an MCP server.

See the resources in the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
@dataclass(repr=False, kw_only=True) class Resource(BaseResource):  """A resource that can be read from an MCP server.  See the [resources in the MCP specification](https://modelcontextprotocol.io/specification/2025-06-18/server/resources).  """ uri: str  """The URI of the resource.""" size: int | None = None  """The size of the raw resource content in bytes (before base64 encoding), if known.""" @classmethod def from_mcp_sdk(cls, mcp_resource: mcp_types.Resource) -> Resource:  """Convert from MCP SDK Resource to PydanticAI Resource.  Args:  mcp_resource: The MCP SDK Resource object.  """ return cls( uri=str(mcp_resource.uri), name=mcp_resource.name, title=mcp_resource.title, description=mcp_resource.description, mime_type=mcp_resource.mimeType, size=mcp_resource.size, annotations=ResourceAnnotations.from_mcp_sdk(mcp_resource.annotations) if mcp_resource.annotations else None, metadata=mcp_resource.meta, ) 

uri instance-attribute

uri: str 

The URI of the resource.

size class-attribute instance-attribute

size: int | None = None 

The size of the raw resource content in bytes (before base64 encoding), if known.

from_mcp_sdk classmethod

from_mcp_sdk(mcp_resource: Resource) -> Resource 

Convert from MCP SDK Resource to PydanticAI Resource.

Parameters:

Name Type Description Default
mcp_resource Resource

The MCP SDK Resource object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
@classmethod def from_mcp_sdk(cls, mcp_resource: mcp_types.Resource) -> Resource:  """Convert from MCP SDK Resource to PydanticAI Resource.  Args:  mcp_resource: The MCP SDK Resource object.  """ return cls( uri=str(mcp_resource.uri), name=mcp_resource.name, title=mcp_resource.title, description=mcp_resource.description, mime_type=mcp_resource.mimeType, size=mcp_resource.size, annotations=ResourceAnnotations.from_mcp_sdk(mcp_resource.annotations) if mcp_resource.annotations else None, metadata=mcp_resource.meta, ) 

ResourceTemplate dataclass

Bases: BaseResource

A template for parameterized resources on an MCP server.

See the resource templates in the MCP specification.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
@dataclass(repr=False, kw_only=True) class ResourceTemplate(BaseResource):  """A template for parameterized resources on an MCP server.  See the [resource templates in the MCP specification](https://modelcontextprotocol.io/specification/2025-06-18/server/resources#resource-templates).  """ uri_template: str  """URI template (RFC 6570) for constructing resource URIs.""" @classmethod def from_mcp_sdk(cls, mcp_template: mcp_types.ResourceTemplate) -> ResourceTemplate:  """Convert from MCP SDK ResourceTemplate to PydanticAI ResourceTemplate.  Args:  mcp_template: The MCP SDK ResourceTemplate object.  """ return cls( uri_template=mcp_template.uriTemplate, name=mcp_template.name, title=mcp_template.title, description=mcp_template.description, mime_type=mcp_template.mimeType, annotations=ResourceAnnotations.from_mcp_sdk(mcp_template.annotations) if mcp_template.annotations else None, metadata=mcp_template.meta, ) 

uri_template instance-attribute

uri_template: str 

URI template (RFC 6570) for constructing resource URIs.

from_mcp_sdk classmethod

from_mcp_sdk( mcp_template: ResourceTemplate, ) -> ResourceTemplate 

Convert from MCP SDK ResourceTemplate to PydanticAI ResourceTemplate.

Parameters:

Name Type Description Default
mcp_template ResourceTemplate

The MCP SDK ResourceTemplate object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
@classmethod def from_mcp_sdk(cls, mcp_template: mcp_types.ResourceTemplate) -> ResourceTemplate:  """Convert from MCP SDK ResourceTemplate to PydanticAI ResourceTemplate.  Args:  mcp_template: The MCP SDK ResourceTemplate object.  """ return cls( uri_template=mcp_template.uriTemplate, name=mcp_template.name, title=mcp_template.title, description=mcp_template.description, mime_type=mcp_template.mimeType, annotations=ResourceAnnotations.from_mcp_sdk(mcp_template.annotations) if mcp_template.annotations else None, metadata=mcp_template.meta, ) 

ServerCapabilities dataclass

Capabilities that an MCP server supports.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
@dataclass(repr=False, kw_only=True) class ServerCapabilities:  """Capabilities that an MCP server supports.""" experimental: list[str] | None = None  """Experimental, non-standard capabilities that the server supports.""" logging: bool = False  """Whether the server supports sending log messages to the client.""" prompts: bool = False  """Whether the server offers any prompt templates.""" prompts_list_changed: bool = False  """Whether the server will emit notifications when the list of prompts changes.""" resources: bool = False  """Whether the server offers any resources to read.""" resources_list_changed: bool = False  """Whether the server will emit notifications when the list of resources changes.""" tools: bool = False  """Whether the server offers any tools to call.""" tools_list_changed: bool = False  """Whether the server will emit notifications when the list of tools changes.""" completions: bool = False  """Whether the server offers autocompletion suggestions for prompts and resources.""" __repr__ = _utils.dataclasses_no_defaults_repr @classmethod def from_mcp_sdk(cls, mcp_capabilities: mcp_types.ServerCapabilities) -> ServerCapabilities:  """Convert from MCP SDK ServerCapabilities to PydanticAI ServerCapabilities.  Args:  mcp_capabilities: The MCP SDK ServerCapabilities object.  """ prompts_cap = mcp_capabilities.prompts resources_cap = mcp_capabilities.resources tools_cap = mcp_capabilities.tools return cls( experimental=list(mcp_capabilities.experimental.keys()) if mcp_capabilities.experimental else None, logging=mcp_capabilities.logging is not None, prompts=prompts_cap is not None, prompts_list_changed=bool(prompts_cap.listChanged) if prompts_cap else False, resources=resources_cap is not None, resources_list_changed=bool(resources_cap.listChanged) if resources_cap else False, tools=tools_cap is not None, tools_list_changed=bool(tools_cap.listChanged) if tools_cap else False, completions=mcp_capabilities.completions is not None, ) 

experimental class-attribute instance-attribute

experimental: list[str] | None = None 

Experimental, non-standard capabilities that the server supports.

logging class-attribute instance-attribute

logging: bool = False 

Whether the server supports sending log messages to the client.

prompts class-attribute instance-attribute

prompts: bool = False 

Whether the server offers any prompt templates.

prompts_list_changed class-attribute instance-attribute

prompts_list_changed: bool = False 

Whether the server will emit notifications when the list of prompts changes.

resources class-attribute instance-attribute

resources: bool = False 

Whether the server offers any resources to read.

resources_list_changed class-attribute instance-attribute

resources_list_changed: bool = False 

Whether the server will emit notifications when the list of resources changes.

tools class-attribute instance-attribute

tools: bool = False 

Whether the server offers any tools to call.

tools_list_changed class-attribute instance-attribute

tools_list_changed: bool = False 

Whether the server will emit notifications when the list of tools changes.

completions class-attribute instance-attribute

completions: bool = False 

Whether the server offers autocompletion suggestions for prompts and resources.

from_mcp_sdk classmethod

from_mcp_sdk( mcp_capabilities: ServerCapabilities, ) -> ServerCapabilities 

Convert from MCP SDK ServerCapabilities to PydanticAI ServerCapabilities.

Parameters:

Name Type Description Default
mcp_capabilities ServerCapabilities

The MCP SDK ServerCapabilities object.

required
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
@classmethod def from_mcp_sdk(cls, mcp_capabilities: mcp_types.ServerCapabilities) -> ServerCapabilities:  """Convert from MCP SDK ServerCapabilities to PydanticAI ServerCapabilities.  Args:  mcp_capabilities: The MCP SDK ServerCapabilities object.  """ prompts_cap = mcp_capabilities.prompts resources_cap = mcp_capabilities.resources tools_cap = mcp_capabilities.tools return cls( experimental=list(mcp_capabilities.experimental.keys()) if mcp_capabilities.experimental else None, logging=mcp_capabilities.logging is not None, prompts=prompts_cap is not None, prompts_list_changed=bool(prompts_cap.listChanged) if prompts_cap else False, resources=resources_cap is not None, resources_list_changed=bool(resources_cap.listChanged) if resources_cap else False, tools=tools_cap is not None, tools_list_changed=bool(tools_cap.listChanged) if tools_cap else False, completions=mcp_capabilities.completions is not None, ) 

MCPServer

Bases: AbstractToolset[Any], ABC

Base class for attaching agents to MCP servers.

See https://modelcontextprotocol.io for more information.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
class MCPServer(AbstractToolset[Any], ABC):  """Base class for attaching agents to MCP servers.  See <https://modelcontextprotocol.io> for more information.  """ tool_prefix: str | None  """A prefix to add to all tools that are registered with the server.  If not empty, will include a trailing underscore(`_`).  e.g. if `tool_prefix='foo'`, then a tool named `bar` will be registered as `foo_bar`  """ log_level: mcp_types.LoggingLevel | None  """The log level to set when connecting to the server, if any.  See <https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging> for more details.  If `None`, no log level will be set.  """ log_handler: LoggingFnT | None  """A handler for logging messages from the server.""" timeout: float  """The timeout in seconds to wait for the client to initialize.""" read_timeout: float  """Maximum time in seconds to wait for new messages before timing out.  This timeout applies to the long-lived connection after it's established.  If no new messages are received within this time, the connection will be considered stale  and may be closed. Defaults to 5 minutes (300 seconds).  """ process_tool_call: ProcessToolCallback | None  """Hook to customize tool calling and optionally pass extra metadata.""" allow_sampling: bool  """Whether to allow MCP sampling through this client.""" sampling_model: models.Model | None  """The model to use for sampling.""" max_retries: int  """The maximum number of times to retry a tool call.""" elicitation_callback: ElicitationFnT | None = None  """Callback function to handle elicitation requests from the server.""" cache_tools: bool  """Whether to cache the list of tools.  When enabled (default), tools are fetched once and cached until either:  - The server sends a `notifications/tools/list_changed` notification  - The connection is closed  Set to `False` for servers that change tools dynamically without sending notifications.  """ cache_resources: bool  """Whether to cache the list of resources.  When enabled (default), resources are fetched once and cached until either:  - The server sends a `notifications/resources/list_changed` notification  - The connection is closed  Set to `False` for servers that change resources dynamically without sending notifications.  """ _id: str | None _enter_lock: Lock = field(compare=False) _running_count: int _exit_stack: AsyncExitStack | None _client: ClientSession _read_stream: MemoryObjectReceiveStream[SessionMessage | Exception] _write_stream: MemoryObjectSendStream[SessionMessage] _server_info: mcp_types.Implementation _server_capabilities: ServerCapabilities _instructions: str | None _cached_tools: list[mcp_types.Tool] | None _cached_resources: list[Resource] | None def __init__( self, tool_prefix: str | None = None, log_level: mcp_types.LoggingLevel | None = None, log_handler: LoggingFnT | None = None, timeout: float = 5, read_timeout: float = 5 * 60, process_tool_call: ProcessToolCallback | None = None, allow_sampling: bool = True, sampling_model: models.Model | None = None, max_retries: int = 1, elicitation_callback: ElicitationFnT | None = None, cache_tools: bool = True, cache_resources: bool = True, *, id: str | None = None, client_info: mcp_types.Implementation | None = None, ): self.tool_prefix = tool_prefix self.log_level = log_level self.log_handler = log_handler self.timeout = timeout self.read_timeout = read_timeout self.process_tool_call = process_tool_call self.allow_sampling = allow_sampling self.sampling_model = sampling_model self.max_retries = max_retries self.elicitation_callback = elicitation_callback self.cache_tools = cache_tools self.cache_resources = cache_resources self.client_info = client_info self._id = id or tool_prefix self.__post_init__() def __post_init__(self): self._enter_lock = Lock() self._running_count = 0 self._exit_stack = None self._cached_tools = None self._cached_resources = None @abstractmethod @asynccontextmanager async def client_streams( self, ) -> AsyncIterator[ tuple[ MemoryObjectReceiveStream[SessionMessage | Exception], MemoryObjectSendStream[SessionMessage], ] ]:  """Create the streams for the MCP server.""" raise NotImplementedError('MCP Server subclasses must implement this method.') yield @property def id(self) -> str | None: return self._id @id.setter def id(self, value: str | None): self._id = value @property def label(self) -> str: if self.id: return super().label # pragma: no cover else: return repr(self) @property def tool_name_conflict_hint(self) -> str: return 'Set the `tool_prefix` attribute to avoid name conflicts.' @property def server_info(self) -> mcp_types.Implementation:  """Access the information send by the MCP server during initialization.""" if getattr(self, '_server_info', None) is None: raise AttributeError( f'The `{self.__class__.__name__}.server_info` is only instantiated after initialization.' ) return self._server_info @property def capabilities(self) -> ServerCapabilities:  """Access the capabilities advertised by the MCP server during initialization.""" if getattr(self, '_server_capabilities', None) is None: raise AttributeError( f'The `{self.__class__.__name__}.capabilities` is only instantiated after initialization.' ) return self._server_capabilities @property def instructions(self) -> str | None:  """Access the instructions sent by the MCP server during initialization.""" if not hasattr(self, '_instructions'): raise AttributeError( f'The `{self.__class__.__name__}.instructions` is only available after initialization.' ) return self._instructions async def list_tools(self) -> list[mcp_types.Tool]:  """Retrieve tools that are currently active on the server.  Tools are cached by default, with cache invalidation on:  - `notifications/tools/list_changed` notifications from the server  - Connection close (cache is cleared in `__aexit__`)  Set `cache_tools=False` for servers that change tools without sending notifications.  """ async with self: if self.cache_tools: if self._cached_tools is not None: return self._cached_tools result = await self._client.list_tools() self._cached_tools = result.tools return result.tools else: result = await self._client.list_tools() return result.tools async def direct_call_tool( self, name: str, args: dict[str, Any], metadata: dict[str, Any] | None = None, ) -> ToolResult:  """Call a tool on the server.  Args:  name: The name of the tool to call.  args: The arguments to pass to the tool.  metadata: Request-level metadata (optional)  Returns:  The result of the tool call.  Raises:  ModelRetry: If the tool call fails.  """ async with self: # Ensure server is running try: result = await self._client.send_request( mcp_types.ClientRequest( mcp_types.CallToolRequest( method='tools/call', params=mcp_types.CallToolRequestParams( name=name, arguments=args, _meta=mcp_types.RequestParams.Meta(**metadata) if metadata else None, ), ) ), mcp_types.CallToolResult, ) except mcp_exceptions.McpError as e: raise exceptions.ModelRetry(e.error.message) if result.isError: message: str | None = None if result.content: # pragma: no branch text_parts = [part.text for part in result.content if isinstance(part, mcp_types.TextContent)] message = '\n'.join(text_parts) raise exceptions.ModelRetry(message or 'MCP tool call failed') # Prefer structured content if there are only text parts, which per the docs would contain the JSON-encoded structured content for backward compatibility. # See https://github.com/modelcontextprotocol/python-sdk#structured-output if (structured := result.structuredContent) and not any( not isinstance(part, mcp_types.TextContent) for part in result.content ): # The MCP SDK wraps primitives and generic types like list in a `result` key, but we want to use the raw value returned by the tool function. # See https://github.com/modelcontextprotocol/python-sdk#structured-output if isinstance(structured, dict) and len(structured) == 1 and 'result' in structured: return structured['result'] return structured mapped = [await self._map_tool_result_part(part) for part in result.content] return mapped[0] if len(mapped) == 1 else mapped async def call_tool( self, name: str, tool_args: dict[str, Any], ctx: RunContext[Any], tool: ToolsetTool[Any], ) -> ToolResult: if self.tool_prefix: name = name.removeprefix(f'{self.tool_prefix}_') ctx = replace(ctx, tool_name=name) if self.process_tool_call is not None: return await self.process_tool_call(ctx, self.direct_call_tool, name, tool_args) else: return await self.direct_call_tool(name, tool_args) async def get_tools(self, ctx: RunContext[Any]) -> dict[str, ToolsetTool[Any]]: return { name: self.tool_for_tool_def( ToolDefinition( name=name, description=mcp_tool.description, parameters_json_schema=mcp_tool.inputSchema, metadata={ 'meta': mcp_tool.meta, 'annotations': mcp_tool.annotations.model_dump() if mcp_tool.annotations else None, 'output_schema': mcp_tool.outputSchema or None, }, ), ) for mcp_tool in await self.list_tools() if (name := f'{self.tool_prefix}_{mcp_tool.name}' if self.tool_prefix else mcp_tool.name) } def tool_for_tool_def(self, tool_def: ToolDefinition) -> ToolsetTool[Any]: return ToolsetTool( toolset=self, tool_def=tool_def, max_retries=self.max_retries, args_validator=TOOL_SCHEMA_VALIDATOR, ) async def list_resources(self) -> list[Resource]:  """Retrieve resources that are currently present on the server.  Resources are cached by default, with cache invalidation on:  - `notifications/resources/list_changed` notifications from the server  - Connection close (cache is cleared in `__aexit__`)  Set `cache_resources=False` for servers that change resources without sending notifications.  Raises:  MCPError: If the server returns an error.  """ async with self: if not self.capabilities.resources: return [] try: if self.cache_resources: if self._cached_resources is not None: return self._cached_resources result = await self._client.list_resources() resources = [Resource.from_mcp_sdk(r) for r in result.resources] self._cached_resources = resources return resources else: result = await self._client.list_resources() return [Resource.from_mcp_sdk(r) for r in result.resources] except mcp_exceptions.McpError as e: raise MCPError.from_mcp_sdk(e) from e async def list_resource_templates(self) -> list[ResourceTemplate]:  """Retrieve resource templates that are currently present on the server.  Raises:  MCPError: If the server returns an error.  """ async with self: # Ensure server is running if not self.capabilities.resources: return [] try: result = await self._client.list_resource_templates() except mcp_exceptions.McpError as e: raise MCPError.from_mcp_sdk(e) from e return [ResourceTemplate.from_mcp_sdk(t) for t in result.resourceTemplates] @overload async def read_resource(self, uri: str) -> str | messages.BinaryContent | list[str | messages.BinaryContent]: ... @overload async def read_resource( self, uri: Resource ) -> str | messages.BinaryContent | list[str | messages.BinaryContent]: ... async def read_resource( self, uri: str | Resource ) -> str | messages.BinaryContent | list[str | messages.BinaryContent]:  """Read the contents of a specific resource by URI.  Args:  uri: The URI of the resource to read, or a Resource object.  Returns:  The resource contents. If the resource has a single content item, returns that item directly.  If the resource has multiple content items, returns a list of items.  Raises:  MCPError: If the server returns an error.  """ resource_uri = uri if isinstance(uri, str) else uri.uri async with self: # Ensure server is running try: result = await self._client.read_resource(AnyUrl(resource_uri)) except mcp_exceptions.McpError as e: raise MCPError.from_mcp_sdk(e) from e return ( self._get_content(result.contents[0]) if len(result.contents) == 1 else [self._get_content(resource) for resource in result.contents] ) async def __aenter__(self) -> Self:  """Enter the MCP server context.  This will initialize the connection to the server.  If this server is an [`MCPServerStdio`][pydantic_ai.mcp.MCPServerStdio], the server will first be started as a subprocess.  This is a no-op if the MCP server has already been entered.  """ async with self._enter_lock: if self._running_count == 0: async with AsyncExitStack() as exit_stack: self._read_stream, self._write_stream = await exit_stack.enter_async_context(self.client_streams()) client = ClientSession( read_stream=self._read_stream, write_stream=self._write_stream, sampling_callback=self._sampling_callback if self.allow_sampling else None, elicitation_callback=self.elicitation_callback, logging_callback=self.log_handler, read_timeout_seconds=timedelta(seconds=self.read_timeout), message_handler=self._handle_notification, client_info=self.client_info, ) self._client = await exit_stack.enter_async_context(client) with anyio.fail_after(self.timeout): result = await self._client.initialize() self._server_info = result.serverInfo self._server_capabilities = ServerCapabilities.from_mcp_sdk(result.capabilities) self._instructions = result.instructions if log_level := self.log_level: await self._client.set_logging_level(log_level) self._exit_stack = exit_stack.pop_all() self._running_count += 1 return self async def __aexit__(self, *args: Any) -> bool | None: if self._running_count == 0: raise ValueError('MCPServer.__aexit__ called more times than __aenter__') async with self._enter_lock: self._running_count -= 1 if self._running_count == 0 and self._exit_stack is not None: await self._exit_stack.aclose() self._exit_stack = None self._cached_tools = None self._cached_resources = None @property def is_running(self) -> bool:  """Check if the MCP server is running.""" return bool(self._running_count) async def _sampling_callback( self, context: RequestContext[ClientSession, Any], params: mcp_types.CreateMessageRequestParams ) -> mcp_types.CreateMessageResult | mcp_types.ErrorData:  """MCP sampling callback.""" if self.sampling_model is None: raise ValueError('Sampling model is not set') # pragma: no cover pai_messages = _mcp.map_from_mcp_params(params) model_settings = models.ModelSettings() if max_tokens := params.maxTokens: # pragma: no branch model_settings['max_tokens'] = max_tokens if temperature := params.temperature: # pragma: no branch model_settings['temperature'] = temperature if stop_sequences := params.stopSequences: # pragma: no branch model_settings['stop_sequences'] = stop_sequences model_response = await model_request(self.sampling_model, pai_messages, model_settings=model_settings) return mcp_types.CreateMessageResult( role='assistant', content=_mcp.map_from_model_response(model_response), model=self.sampling_model.model_name, ) async def _handle_notification( self, message: RequestResponder[mcp_types.ServerRequest, mcp_types.ClientResult] | mcp_types.ServerNotification | Exception, ) -> None:  """Handle notifications from the MCP server, invalidating caches as needed.""" if isinstance(message, mcp_types.ServerNotification): # pragma: no branch if isinstance(message.root, mcp_types.ToolListChangedNotification): self._cached_tools = None elif isinstance(message.root, mcp_types.ResourceListChangedNotification): self._cached_resources = None async def _map_tool_result_part( self, part: mcp_types.ContentBlock ) -> str | messages.BinaryContent | dict[str, Any] | list[Any]: # See https://github.com/jlowin/fastmcp/blob/main/docs/servers/tools.mdx#return-values if isinstance(part, mcp_types.TextContent): text = part.text if text.startswith(('[', '{')): try: return pydantic_core.from_json(text) except ValueError: pass return text elif isinstance(part, mcp_types.ImageContent): return messages.BinaryContent(data=base64.b64decode(part.data), media_type=part.mimeType) elif isinstance(part, mcp_types.AudioContent): # NOTE: The FastMCP server doesn't support audio content. # See <https://github.com/modelcontextprotocol/python-sdk/issues/952> for more details. return messages.BinaryContent( data=base64.b64decode(part.data), media_type=part.mimeType ) # pragma: no cover elif isinstance(part, mcp_types.EmbeddedResource): resource = part.resource return self._get_content(resource) elif isinstance(part, mcp_types.ResourceLink): return await self.read_resource(str(part.uri)) else: assert_never(part) def _get_content( self, resource: mcp_types.TextResourceContents | mcp_types.BlobResourceContents ) -> str | messages.BinaryContent: if isinstance(resource, mcp_types.TextResourceContents): return resource.text elif isinstance(resource, mcp_types.BlobResourceContents): return messages.BinaryContent( data=base64.b64decode(resource.blob), media_type=resource.mimeType or 'application/octet-stream' ) else: assert_never(resource) def __eq__(self, value: object, /) -> bool: return isinstance(value, MCPServer) and self.id == value.id and self.tool_prefix == value.tool_prefix 

tool_prefix instance-attribute

tool_prefix: str | None = tool_prefix 

A prefix to add to all tools that are registered with the server.

If not empty, will include a trailing underscore(_).

e.g. if tool_prefix='foo', then a tool named bar will be registered as foo_bar

log_level instance-attribute

log_level: LoggingLevel | None = log_level 

The log level to set when connecting to the server, if any.

See https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging for more details.

If None, no log level will be set.

log_handler instance-attribute

log_handler: LoggingFnT | None = log_handler 

A handler for logging messages from the server.

timeout instance-attribute

timeout: float = timeout 

The timeout in seconds to wait for the client to initialize.

read_timeout instance-attribute

read_timeout: float = read_timeout 

Maximum time in seconds to wait for new messages before timing out.

This timeout applies to the long-lived connection after it's established. If no new messages are received within this time, the connection will be considered stale and may be closed. Defaults to 5 minutes (300 seconds).

process_tool_call instance-attribute

process_tool_call: ProcessToolCallback | None = ( process_tool_call ) 

Hook to customize tool calling and optionally pass extra metadata.

allow_sampling instance-attribute

allow_sampling: bool = allow_sampling 

Whether to allow MCP sampling through this client.

sampling_model instance-attribute

sampling_model: Model | None = sampling_model 

The model to use for sampling.

max_retries instance-attribute

max_retries: int = max_retries 

The maximum number of times to retry a tool call.

elicitation_callback class-attribute instance-attribute

elicitation_callback: ElicitationFnT | None = ( elicitation_callback ) 

Callback function to handle elicitation requests from the server.

cache_tools instance-attribute

cache_tools: bool = cache_tools 

Whether to cache the list of tools.

When enabled (default), tools are fetched once and cached until either: - The server sends a notifications/tools/list_changed notification - The connection is closed

Set to False for servers that change tools dynamically without sending notifications.

cache_resources instance-attribute

cache_resources: bool = cache_resources 

Whether to cache the list of resources.

When enabled (default), resources are fetched once and cached until either: - The server sends a notifications/resources/list_changed notification - The connection is closed

Set to False for servers that change resources dynamically without sending notifications.

client_streams abstractmethod async

client_streams() -> AsyncIterator[ tuple[ MemoryObjectReceiveStream[ SessionMessage | Exception ], MemoryObjectSendStream[SessionMessage], ] ] 

Create the streams for the MCP server.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
417 418 419 420 421 422 423 424 425 426 427 428 429
@abstractmethod @asynccontextmanager async def client_streams( self, ) -> AsyncIterator[ tuple[ MemoryObjectReceiveStream[SessionMessage | Exception], MemoryObjectSendStream[SessionMessage], ] ]:  """Create the streams for the MCP server.""" raise NotImplementedError('MCP Server subclasses must implement this method.') yield 

server_info property

server_info: Implementation 

Access the information send by the MCP server during initialization.

capabilities property

capabilities: ServerCapabilities 

Access the capabilities advertised by the MCP server during initialization.

instructions property

instructions: str | None 

Access the instructions sent by the MCP server during initialization.

list_tools async

list_tools() -> list[Tool] 

Retrieve tools that are currently active on the server.

Tools are cached by default, with cache invalidation on: - notifications/tools/list_changed notifications from the server - Connection close (cache is cleared in __aexit__)

Set cache_tools=False for servers that change tools without sending notifications.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
async def list_tools(self) -> list[mcp_types.Tool]:  """Retrieve tools that are currently active on the server.  Tools are cached by default, with cache invalidation on:  - `notifications/tools/list_changed` notifications from the server  - Connection close (cache is cleared in `__aexit__`)  Set `cache_tools=False` for servers that change tools without sending notifications.  """ async with self: if self.cache_tools: if self._cached_tools is not None: return self._cached_tools result = await self._client.list_tools() self._cached_tools = result.tools return result.tools else: result = await self._client.list_tools() return result.tools 

direct_call_tool async

direct_call_tool( name: str, args: dict[str, Any], metadata: dict[str, Any] | None = None, ) -> ToolResult 

Call a tool on the server.

Parameters:

Name Type Description Default
name str

The name of the tool to call.

required
args dict[str, Any]

The arguments to pass to the tool.

required
metadata dict[str, Any] | None

Request-level metadata (optional)

None

Returns:

Type Description
ToolResult

The result of the tool call.

Raises:

Type Description
ModelRetry

If the tool call fails.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
async def direct_call_tool( self, name: str, args: dict[str, Any], metadata: dict[str, Any] | None = None, ) -> ToolResult:  """Call a tool on the server.  Args:  name: The name of the tool to call.  args: The arguments to pass to the tool.  metadata: Request-level metadata (optional)  Returns:  The result of the tool call.  Raises:  ModelRetry: If the tool call fails.  """ async with self: # Ensure server is running try: result = await self._client.send_request( mcp_types.ClientRequest( mcp_types.CallToolRequest( method='tools/call', params=mcp_types.CallToolRequestParams( name=name, arguments=args, _meta=mcp_types.RequestParams.Meta(**metadata) if metadata else None, ), ) ), mcp_types.CallToolResult, ) except mcp_exceptions.McpError as e: raise exceptions.ModelRetry(e.error.message) if result.isError: message: str | None = None if result.content: # pragma: no branch text_parts = [part.text for part in result.content if isinstance(part, mcp_types.TextContent)] message = '\n'.join(text_parts) raise exceptions.ModelRetry(message or 'MCP tool call failed') # Prefer structured content if there are only text parts, which per the docs would contain the JSON-encoded structured content for backward compatibility. # See https://github.com/modelcontextprotocol/python-sdk#structured-output if (structured := result.structuredContent) and not any( not isinstance(part, mcp_types.TextContent) for part in result.content ): # The MCP SDK wraps primitives and generic types like list in a `result` key, but we want to use the raw value returned by the tool function. # See https://github.com/modelcontextprotocol/python-sdk#structured-output if isinstance(structured, dict) and len(structured) == 1 and 'result' in structured: return structured['result'] return structured mapped = [await self._map_tool_result_part(part) for part in result.content] return mapped[0] if len(mapped) == 1 else mapped 

list_resources async

list_resources() -> list[Resource] 

Retrieve resources that are currently present on the server.

Resources are cached by default, with cache invalidation on: - notifications/resources/list_changed notifications from the server - Connection close (cache is cleared in __aexit__)

Set cache_resources=False for servers that change resources without sending notifications.

Raises:

Type Description
MCPError

If the server returns an error.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
async def list_resources(self) -> list[Resource]:  """Retrieve resources that are currently present on the server.  Resources are cached by default, with cache invalidation on:  - `notifications/resources/list_changed` notifications from the server  - Connection close (cache is cleared in `__aexit__`)  Set `cache_resources=False` for servers that change resources without sending notifications.  Raises:  MCPError: If the server returns an error.  """ async with self: if not self.capabilities.resources: return [] try: if self.cache_resources: if self._cached_resources is not None: return self._cached_resources result = await self._client.list_resources() resources = [Resource.from_mcp_sdk(r) for r in result.resources] self._cached_resources = resources return resources else: result = await self._client.list_resources() return [Resource.from_mcp_sdk(r) for r in result.resources] except mcp_exceptions.McpError as e: raise MCPError.from_mcp_sdk(e) from e 

list_resource_templates async

list_resource_templates() -> list[ResourceTemplate] 

Retrieve resource templates that are currently present on the server.

Raises:

Type Description
MCPError

If the server returns an error.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640
async def list_resource_templates(self) -> list[ResourceTemplate]:  """Retrieve resource templates that are currently present on the server.  Raises:  MCPError: If the server returns an error.  """ async with self: # Ensure server is running if not self.capabilities.resources: return [] try: result = await self._client.list_resource_templates() except mcp_exceptions.McpError as e: raise MCPError.from_mcp_sdk(e) from e return [ResourceTemplate.from_mcp_sdk(t) for t in result.resourceTemplates] 

read_resource async

read_resource( uri: str, ) -> str | BinaryContent | list[str | BinaryContent] 
read_resource( uri: Resource, ) -> str | BinaryContent | list[str | BinaryContent] 
read_resource( uri: str | Resource, ) -> str | BinaryContent | list[str | BinaryContent] 

Read the contents of a specific resource by URI.

Parameters:

Name Type Description Default
uri str | Resource

The URI of the resource to read, or a Resource object.

required

Returns:

Type Description
str | BinaryContent | list[str | BinaryContent]

The resource contents. If the resource has a single content item, returns that item directly.

str | BinaryContent | list[str | BinaryContent]

If the resource has multiple content items, returns a list of items.

Raises:

Type Description
MCPError

If the server returns an error.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
async def read_resource( self, uri: str | Resource ) -> str | messages.BinaryContent | list[str | messages.BinaryContent]:  """Read the contents of a specific resource by URI.  Args:  uri: The URI of the resource to read, or a Resource object.  Returns:  The resource contents. If the resource has a single content item, returns that item directly.  If the resource has multiple content items, returns a list of items.  Raises:  MCPError: If the server returns an error.  """ resource_uri = uri if isinstance(uri, str) else uri.uri async with self: # Ensure server is running try: result = await self._client.read_resource(AnyUrl(resource_uri)) except mcp_exceptions.McpError as e: raise MCPError.from_mcp_sdk(e) from e return ( self._get_content(result.contents[0]) if len(result.contents) == 1 else [self._get_content(resource) for resource in result.contents] ) 

__aenter__ async

__aenter__() -> Self 

Enter the MCP server context.

This will initialize the connection to the server. If this server is an MCPServerStdio, the server will first be started as a subprocess.

This is a no-op if the MCP server has already been entered.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
async def __aenter__(self) -> Self:  """Enter the MCP server context.  This will initialize the connection to the server.  If this server is an [`MCPServerStdio`][pydantic_ai.mcp.MCPServerStdio], the server will first be started as a subprocess.  This is a no-op if the MCP server has already been entered.  """ async with self._enter_lock: if self._running_count == 0: async with AsyncExitStack() as exit_stack: self._read_stream, self._write_stream = await exit_stack.enter_async_context(self.client_streams()) client = ClientSession( read_stream=self._read_stream, write_stream=self._write_stream, sampling_callback=self._sampling_callback if self.allow_sampling else None, elicitation_callback=self.elicitation_callback, logging_callback=self.log_handler, read_timeout_seconds=timedelta(seconds=self.read_timeout), message_handler=self._handle_notification, client_info=self.client_info, ) self._client = await exit_stack.enter_async_context(client) with anyio.fail_after(self.timeout): result = await self._client.initialize() self._server_info = result.serverInfo self._server_capabilities = ServerCapabilities.from_mcp_sdk(result.capabilities) self._instructions = result.instructions if log_level := self.log_level: await self._client.set_logging_level(log_level) self._exit_stack = exit_stack.pop_all() self._running_count += 1 return self 

is_running property

is_running: bool 

Check if the MCP server is running.

MCPServerStdio

Bases: MCPServer

Runs an MCP server in a subprocess and communicates with it over stdin/stdout.

This class implements the stdio transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio for more information.

Note

Using this class as an async context manager will start the server as a subprocess when entering the context, and stop it when exiting the context.

Example:

from pydantic_ai import Agent from pydantic_ai.mcp import MCPServerStdio server = MCPServerStdio( # (1)! 'uv', args=['run', 'mcp-run-python', 'stdio'], timeout=10 ) agent = Agent('openai:gpt-4o', toolsets=[server]) 

  1. See MCP Run Python for more information.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
class MCPServerStdio(MCPServer):  """Runs an MCP server in a subprocess and communicates with it over stdin/stdout.  This class implements the stdio transport from the MCP specification.  See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio> for more information.  !!! note  Using this class as an async context manager will start the server as a subprocess when entering the context,  and stop it when exiting the context.  Example:  ```python {py="3.10"}  from pydantic_ai import Agent  from pydantic_ai.mcp import MCPServerStdio  server = MCPServerStdio( # (1)!  'uv', args=['run', 'mcp-run-python', 'stdio'], timeout=10  )  agent = Agent('openai:gpt-4o', toolsets=[server])  ```  1. See [MCP Run Python](https://github.com/pydantic/mcp-run-python) for more information.  """ command: str  """The command to run.""" args: Sequence[str]  """The arguments to pass to the command.""" env: dict[str, str] | None  """The environment variables the CLI server will have access to.  By default the subprocess will not inherit any environment variables from the parent process.  If you want to inherit the environment variables from the parent process, use `env=os.environ`.  """ cwd: str | Path | None  """The working directory to use when spawning the process.""" # last fields are re-defined from the parent class so they appear as fields tool_prefix: str | None log_level: mcp_types.LoggingLevel | None log_handler: LoggingFnT | None timeout: float read_timeout: float process_tool_call: ProcessToolCallback | None allow_sampling: bool sampling_model: models.Model | None max_retries: int elicitation_callback: ElicitationFnT | None = None cache_tools: bool cache_resources: bool def __init__( self, command: str, args: Sequence[str], *, env: dict[str, str] | None = None, cwd: str | Path | None = None, tool_prefix: str | None = None, log_level: mcp_types.LoggingLevel | None = None, log_handler: LoggingFnT | None = None, timeout: float = 5, read_timeout: float = 5 * 60, process_tool_call: ProcessToolCallback | None = None, allow_sampling: bool = True, sampling_model: models.Model | None = None, max_retries: int = 1, elicitation_callback: ElicitationFnT | None = None, cache_tools: bool = True, cache_resources: bool = True, id: str | None = None, client_info: mcp_types.Implementation | None = None, ):  """Build a new MCP server.  Args:  command: The command to run.  args: The arguments to pass to the command.  env: The environment variables to set in the subprocess.  cwd: The working directory to use when spawning the process.  tool_prefix: A prefix to add to all tools that are registered with the server.  log_level: The log level to set when connecting to the server, if any.  log_handler: A handler for logging messages from the server.  timeout: The timeout in seconds to wait for the client to initialize.  read_timeout: Maximum time in seconds to wait for new messages before timing out.  process_tool_call: Hook to customize tool calling and optionally pass extra metadata.  allow_sampling: Whether to allow MCP sampling through this client.  sampling_model: The model to use for sampling.  max_retries: The maximum number of times to retry a tool call.  elicitation_callback: Callback function to handle elicitation requests from the server.  cache_tools: Whether to cache the list of tools.  See [`MCPServer.cache_tools`][pydantic_ai.mcp.MCPServer.cache_tools].  cache_resources: Whether to cache the list of resources.  See [`MCPServer.cache_resources`][pydantic_ai.mcp.MCPServer.cache_resources].  id: An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.  client_info: Information describing the MCP client implementation.  """ self.command = command self.args = args self.env = env self.cwd = cwd super().__init__( tool_prefix, log_level, log_handler, timeout, read_timeout, process_tool_call, allow_sampling, sampling_model, max_retries, elicitation_callback, cache_tools, cache_resources, id=id, client_info=client_info, ) @classmethod def __get_pydantic_core_schema__(cls, _: Any, __: Any) -> CoreSchema: return core_schema.no_info_after_validator_function( lambda dct: MCPServerStdio(**dct), core_schema.typed_dict_schema( { 'command': core_schema.typed_dict_field(core_schema.str_schema()), 'args': core_schema.typed_dict_field(core_schema.list_schema(core_schema.str_schema())), 'env': core_schema.typed_dict_field( core_schema.dict_schema(core_schema.str_schema(), core_schema.str_schema()), required=False, ), } ), ) @asynccontextmanager async def client_streams( self, ) -> AsyncIterator[ tuple[ MemoryObjectReceiveStream[SessionMessage | Exception], MemoryObjectSendStream[SessionMessage], ] ]: server = StdioServerParameters(command=self.command, args=list(self.args), env=self.env, cwd=self.cwd) async with stdio_client(server=server) as (read_stream, write_stream): yield read_stream, write_stream def __repr__(self) -> str: repr_args = [ f'command={self.command!r}', f'args={self.args!r}', ] if self.id: repr_args.append(f'id={self.id!r}') # pragma: lax no cover return f'{self.__class__.__name__}({", ".join(repr_args)})' def __eq__(self, value: object, /) -> bool: return ( super().__eq__(value) and isinstance(value, MCPServerStdio) and self.command == value.command and self.args == value.args and self.env == value.env and self.cwd == value.cwd ) 

__init__

__init__( command: str, args: Sequence[str], *, env: dict[str, str] | None = None, cwd: str | Path | None = None, tool_prefix: str | None = None, log_level: LoggingLevel | None = None, log_handler: LoggingFnT | None = None, timeout: float = 5, read_timeout: float = 5 * 60, process_tool_call: ProcessToolCallback | None = None, allow_sampling: bool = True, sampling_model: Model | None = None, max_retries: int = 1, elicitation_callback: ElicitationFnT | None = None, cache_tools: bool = True, cache_resources: bool = True, id: str | None = None, client_info: Implementation | None = None ) 

Build a new MCP server.

Parameters:

Name Type Description Default
command str

The command to run.

required
args Sequence[str]

The arguments to pass to the command.

required
env dict[str, str] | None

The environment variables to set in the subprocess.

None
cwd str | Path | None

The working directory to use when spawning the process.

None
tool_prefix str | None

A prefix to add to all tools that are registered with the server.

None
log_level LoggingLevel | None

The log level to set when connecting to the server, if any.

None
log_handler LoggingFnT | None

A handler for logging messages from the server.

None
timeout float

The timeout in seconds to wait for the client to initialize.

5
read_timeout float

Maximum time in seconds to wait for new messages before timing out.

5 * 60
process_tool_call ProcessToolCallback | None

Hook to customize tool calling and optionally pass extra metadata.

None
allow_sampling bool

Whether to allow MCP sampling through this client.

True
sampling_model Model | None

The model to use for sampling.

None
max_retries int

The maximum number of times to retry a tool call.

1
elicitation_callback ElicitationFnT | None

Callback function to handle elicitation requests from the server.

None
cache_tools bool

Whether to cache the list of tools. See MCPServer.cache_tools.

True
cache_resources bool

Whether to cache the list of resources. See MCPServer.cache_resources.

True
id str | None

An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.

None
client_info Implementation | None

Information describing the MCP client implementation.

None
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
def __init__( self, command: str, args: Sequence[str], *, env: dict[str, str] | None = None, cwd: str | Path | None = None, tool_prefix: str | None = None, log_level: mcp_types.LoggingLevel | None = None, log_handler: LoggingFnT | None = None, timeout: float = 5, read_timeout: float = 5 * 60, process_tool_call: ProcessToolCallback | None = None, allow_sampling: bool = True, sampling_model: models.Model | None = None, max_retries: int = 1, elicitation_callback: ElicitationFnT | None = None, cache_tools: bool = True, cache_resources: bool = True, id: str | None = None, client_info: mcp_types.Implementation | None = None, ):  """Build a new MCP server.  Args:  command: The command to run.  args: The arguments to pass to the command.  env: The environment variables to set in the subprocess.  cwd: The working directory to use when spawning the process.  tool_prefix: A prefix to add to all tools that are registered with the server.  log_level: The log level to set when connecting to the server, if any.  log_handler: A handler for logging messages from the server.  timeout: The timeout in seconds to wait for the client to initialize.  read_timeout: Maximum time in seconds to wait for new messages before timing out.  process_tool_call: Hook to customize tool calling and optionally pass extra metadata.  allow_sampling: Whether to allow MCP sampling through this client.  sampling_model: The model to use for sampling.  max_retries: The maximum number of times to retry a tool call.  elicitation_callback: Callback function to handle elicitation requests from the server.  cache_tools: Whether to cache the list of tools.  See [`MCPServer.cache_tools`][pydantic_ai.mcp.MCPServer.cache_tools].  cache_resources: Whether to cache the list of resources.  See [`MCPServer.cache_resources`][pydantic_ai.mcp.MCPServer.cache_resources].  id: An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.  client_info: Information describing the MCP client implementation.  """ self.command = command self.args = args self.env = env self.cwd = cwd super().__init__( tool_prefix, log_level, log_handler, timeout, read_timeout, process_tool_call, allow_sampling, sampling_model, max_retries, elicitation_callback, cache_tools, cache_resources, id=id, client_info=client_info, ) 

command instance-attribute

command: str = command 

The command to run.

args instance-attribute

args: Sequence[str] = args 

The arguments to pass to the command.

env instance-attribute

env: dict[str, str] | None = env 

The environment variables the CLI server will have access to.

By default the subprocess will not inherit any environment variables from the parent process. If you want to inherit the environment variables from the parent process, use env=os.environ.

cwd instance-attribute

cwd: str | Path | None = cwd 

The working directory to use when spawning the process.

MCPServerSSE

Bases: _MCPServerHTTP

An MCP server that connects over streamable HTTP connections.

This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent from pydantic_ai.mcp import MCPServerSSE server = MCPServerSSE('http://localhost:3001/sse') agent = Agent('openai:gpt-4o', toolsets=[server]) 

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
class MCPServerSSE(_MCPServerHTTP):  """An MCP server that connects over streamable HTTP connections.  This class implements the SSE transport from the MCP specification.  See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse> for more information.  !!! note  Using this class as an async context manager will create a new pool of HTTP connections to connect  to a server which should already be running.  Example:  ```python {py="3.10"}  from pydantic_ai import Agent  from pydantic_ai.mcp import MCPServerSSE  server = MCPServerSSE('http://localhost:3001/sse')  agent = Agent('openai:gpt-4o', toolsets=[server])  ```  """ @classmethod def __get_pydantic_core_schema__(cls, _: Any, __: Any) -> CoreSchema: return core_schema.no_info_after_validator_function( lambda dct: MCPServerSSE(**dct), core_schema.typed_dict_schema( { 'url': core_schema.typed_dict_field(core_schema.str_schema()), 'headers': core_schema.typed_dict_field( core_schema.dict_schema(core_schema.str_schema(), core_schema.str_schema()), required=False ), } ), ) @property def _transport_client(self): return sse_client # pragma: no cover def __eq__(self, value: object, /) -> bool: return super().__eq__(value) and isinstance(value, MCPServerSSE) and self.url == value.url 

MCPServerHTTP deprecated

Bases: MCPServerSSE

Deprecated

The MCPServerHTTP class is deprecated, use MCPServerSSE instead.

An MCP server that connects over HTTP using the old SSE transport.

This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent from pydantic_ai.mcp import MCPServerHTTP server = MCPServerHTTP('http://localhost:3001/sse') agent = Agent('openai:gpt-4o', toolsets=[server]) 

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
@deprecated('The `MCPServerHTTP` class is deprecated, use `MCPServerSSE` instead.') class MCPServerHTTP(MCPServerSSE):  """An MCP server that connects over HTTP using the old SSE transport.  This class implements the SSE transport from the MCP specification.  See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse> for more information.  !!! note  Using this class as an async context manager will create a new pool of HTTP connections to connect  to a server which should already be running.  Example:  ```python {py="3.10" test="skip"}  from pydantic_ai import Agent  from pydantic_ai.mcp import MCPServerHTTP  server = MCPServerHTTP('http://localhost:3001/sse')  agent = Agent('openai:gpt-4o', toolsets=[server])  ```  """ 

MCPServerStreamableHTTP

Bases: _MCPServerHTTP

An MCP server that connects over HTTP using the Streamable HTTP transport.

This class implements the Streamable HTTP transport from the MCP specification. See https://modelcontextprotocol.io/introduction#streamable-http for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent from pydantic_ai.mcp import MCPServerStreamableHTTP server = MCPServerStreamableHTTP('http://localhost:8000/mcp') agent = Agent('openai:gpt-4o', toolsets=[server]) 

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
class MCPServerStreamableHTTP(_MCPServerHTTP):  """An MCP server that connects over HTTP using the Streamable HTTP transport.  This class implements the Streamable HTTP transport from the MCP specification.  See <https://modelcontextprotocol.io/introduction#streamable-http> for more information.  !!! note  Using this class as an async context manager will create a new pool of HTTP connections to connect  to a server which should already be running.  Example:  ```python {py="3.10"}  from pydantic_ai import Agent  from pydantic_ai.mcp import MCPServerStreamableHTTP  server = MCPServerStreamableHTTP('http://localhost:8000/mcp')  agent = Agent('openai:gpt-4o', toolsets=[server])  ```  """ @classmethod def __get_pydantic_core_schema__(cls, _: Any, __: Any) -> CoreSchema: return core_schema.no_info_after_validator_function( lambda dct: MCPServerStreamableHTTP(**dct), core_schema.typed_dict_schema( { 'url': core_schema.typed_dict_field(core_schema.str_schema()), 'headers': core_schema.typed_dict_field( core_schema.dict_schema(core_schema.str_schema(), core_schema.str_schema()), required=False ), } ), ) @property def _transport_client(self): return streamablehttp_client def __eq__(self, value: object, /) -> bool: return super().__eq__(value) and isinstance(value, MCPServerStreamableHTTP) and self.url == value.url 

ToolResult module-attribute

ToolResult = ( str | BinaryContent | dict[str, Any] | list[Any] | Sequence[ str | BinaryContent | dict[str, Any] | list[Any] ] ) 

The result type of an MCP tool call.

CallToolFunc module-attribute

CallToolFunc = Callable[ [str, dict[str, Any], dict[str, Any] | None], Awaitable[ToolResult], ] 

A function type that represents a tool call.

ProcessToolCallback module-attribute

ProcessToolCallback = Callable[ [RunContext[Any], CallToolFunc, str, dict[str, Any]], Awaitable[ToolResult], ] 

A process tool callback.

It accepts a run context, the original tool call function, a tool name, and arguments.

Allows wrapping an MCP server tool call to customize it, including adding extra request metadata.

MCPServerConfig

Bases: BaseModel

Configuration for MCP servers.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
class MCPServerConfig(BaseModel):  """Configuration for MCP servers.""" mcp_servers: Annotated[ dict[ str, Annotated[ Annotated[MCPServerStdio, Tag('stdio')] | Annotated[MCPServerStreamableHTTP, Tag('streamable-http')] | Annotated[MCPServerSSE, Tag('sse')], Discriminator(_mcp_server_discriminator), ], ], Field(alias='mcpServers'), ] 

load_mcp_servers

load_mcp_servers( config_path: str | Path, ) -> list[ MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE ] 

Load MCP servers from a configuration file.

Environment variables can be referenced in the configuration file using: - ${VAR_NAME} syntax - expands to the value of VAR_NAME, raises error if not defined - ${VAR_NAME:-default} syntax - expands to VAR_NAME if set, otherwise uses the default value

Parameters:

Name Type Description Default
config_path str | Path

The path to the configuration file.

required

Returns:

Type Description
list[MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE]

A list of MCP servers.

Raises:

Type Description
FileNotFoundError

If the configuration file does not exist.

ValidationError

If the configuration file does not match the schema.

ValueError

If an environment variable referenced in the configuration is not defined and no default value is provided.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
def load_mcp_servers(config_path: str | Path) -> list[MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE]:  """Load MCP servers from a configuration file.  Environment variables can be referenced in the configuration file using:  - `${VAR_NAME}` syntax - expands to the value of VAR_NAME, raises error if not defined  - `${VAR_NAME:-default}` syntax - expands to VAR_NAME if set, otherwise uses the default value  Args:  config_path: The path to the configuration file.  Returns:  A list of MCP servers.  Raises:  FileNotFoundError: If the configuration file does not exist.  ValidationError: If the configuration file does not match the schema.  ValueError: If an environment variable referenced in the configuration is not defined and no default value is provided.  """ config_path = Path(config_path) if not config_path.exists(): raise FileNotFoundError(f'Config file {config_path} not found') config_data = pydantic_core.from_json(config_path.read_bytes()) expanded_config_data = _expand_env_vars(config_data) config = MCPServerConfig.model_validate(expanded_config_data) servers: list[MCPServerStdio | MCPServerStreamableHTTP | MCPServerSSE] = [] for name, server in config.mcp_servers.items(): server.id = name server.tool_prefix = name servers.append(server) return servers