Skip to content

pydantic_ai.ui

StateDeps dataclass

Bases: Generic[StateT]

Dependency type that holds state.

This class is used to manage the state of an agent run. It allows setting the state of the agent run with a specific type of state model, which must be a subclass of BaseModel.

The state is set using the state setter by the Adapter when the run starts.

Implements the StateHandler protocol.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
 87  88  89  90  91  92  93  94  95  96  97  98  99 100
@dataclass class StateDeps(Generic[StateT]):  """Dependency type that holds state.  This class is used to manage the state of an agent run. It allows setting  the state of the agent run with a specific type of state model, which must  be a subclass of `BaseModel`.  The state is set using the `state` setter by the `Adapter` when the run starts.  Implements the `StateHandler` protocol.  """ state: StateT 

StateHandler

Bases: Protocol

Protocol for state handlers in agent runs. Requires the class to be a dataclass with a state field.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
@runtime_checkable class StateHandler(Protocol):  """Protocol for state handlers in agent runs. Requires the class to be a dataclass with a `state` field.""" # Has to be a dataclass so we can use `replace` to update the state. # From https://github.com/python/typeshed/blob/9ab7fde0a0cd24ed7a72837fcb21093b811b80d8/stdlib/_typeshed/__init__.pyi#L352 __dataclass_fields__: ClassVar[dict[str, Field[Any]]] @property def state(self) -> Any:  """Get the current state of the agent run.""" ... @state.setter def state(self, state: Any) -> None:  """Set the state of the agent run.  This method is called to update the state of the agent run with the  provided state.  Args:  state: The run state.  """ ... 

state property writable

state: Any 

Get the current state of the agent run.

UIAdapter dataclass

Bases: ABC, Generic[RunInputT, MessageT, EventT, AgentDepsT, OutputDataT]

Base class for UI adapters.

This class is responsible for transforming agent run input received from the frontend into arguments for Agent.run_stream_events(), running the agent, and then transforming Pydantic AI events into protocol-specific events.

The event stream transformation is handled by a protocol-specific UIEventStream subclass.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
@dataclass class UIAdapter(ABC, Generic[RunInputT, MessageT, EventT, AgentDepsT, OutputDataT]):  """Base class for UI adapters.  This class is responsible for transforming agent run input received from the frontend into arguments for [`Agent.run_stream_events()`][pydantic_ai.Agent.run_stream_events], running the agent, and then transforming Pydantic AI events into protocol-specific events.  The event stream transformation is handled by a protocol-specific [`UIEventStream`][pydantic_ai.ui.UIEventStream] subclass.  """ agent: AbstractAgent[AgentDepsT, OutputDataT]  """The Pydantic AI agent to run.""" run_input: RunInputT  """The protocol-specific run input object.""" _: KW_ONLY accept: str | None = None  """The `Accept` header value of the request, used to determine how to encode the protocol-specific events for the streaming response.""" @classmethod async def from_request( cls, request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT] ) -> UIAdapter[RunInputT, MessageT, EventT, AgentDepsT, OutputDataT]:  """Create an adapter from a request.""" return cls( agent=agent, run_input=cls.build_run_input(await request.body()), accept=request.headers.get('accept'), ) @classmethod @abstractmethod def build_run_input(cls, body: bytes) -> RunInputT:  """Build a protocol-specific run input object from the request body.""" raise NotImplementedError @classmethod @abstractmethod def load_messages(cls, messages: Sequence[MessageT]) -> list[ModelMessage]:  """Transform protocol-specific messages into Pydantic AI messages.""" raise NotImplementedError @classmethod def dump_messages(cls, messages: Sequence[ModelMessage]) -> list[MessageT]:  """Transform Pydantic AI messages into protocol-specific messages.""" raise NotImplementedError @abstractmethod def build_event_stream(self) -> UIEventStream[RunInputT, EventT, AgentDepsT, OutputDataT]:  """Build a protocol-specific event stream transformer.""" raise NotImplementedError @cached_property @abstractmethod def messages(self) -> list[ModelMessage]:  """Pydantic AI messages from the protocol-specific run input.""" raise NotImplementedError @cached_property def toolset(self) -> AbstractToolset[AgentDepsT] | None:  """Toolset representing frontend tools from the protocol-specific run input.""" return None @cached_property def state(self) -> dict[str, Any] | None:  """Frontend state from the protocol-specific run input.""" return None def transform_stream( self, stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None, ) -> AsyncIterator[EventT]:  """Transform a stream of Pydantic AI events into protocol-specific events.  Args:  stream: The stream of Pydantic AI events to transform.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  """ return self.build_event_stream().transform_stream(stream, on_complete=on_complete) def encode_stream(self, stream: AsyncIterator[EventT]) -> AsyncIterator[str]:  """Encode a stream of protocol-specific events as strings according to the `Accept` header value.  Args:  stream: The stream of protocol-specific events to encode.  """ return self.build_event_stream().encode_stream(stream) def streaming_response(self, stream: AsyncIterator[EventT]) -> StreamingResponse:  """Generate a streaming response from a stream of protocol-specific events.  Args:  stream: The stream of protocol-specific events to encode.  """ return self.build_event_stream().streaming_response(stream) def run_stream_native( self, *, output_type: OutputSpec[Any] | None = None, message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, builtin_tools: Sequence[AbstractBuiltinTool] | None = None, ) -> AsyncIterator[NativeEvent]:  """Run the agent with the protocol-specific run input and stream Pydantic AI events.  Args:  output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no  output validators since output validators would expect an argument that matches the agent's output type.  message_history: History of the conversation so far.  deferred_tool_results: Optional results for deferred tool calls in the message history.  model: Optional model to use for this run, required if `model` was not set when creating the agent.  instructions: Optional additional instructions to use for this run.  deps: Optional dependencies to use for this run.  model_settings: Optional settings to use for this model's request.  usage_limits: Optional limits on model request count or token usage.  usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.  infer_name: Whether to try to infer the agent name from the call frame if it's not set.  toolsets: Optional additional toolsets for this run.  builtin_tools: Optional additional builtin tools to use for this run.  """ message_history = [*(message_history or []), *self.messages] toolset = self.toolset if toolset: output_type = [output_type or self.agent.output_type, DeferredToolRequests] toolsets = [*(toolsets or []), toolset] if isinstance(deps, StateHandler): raw_state = self.state or {} if isinstance(deps.state, BaseModel): state = type(deps.state).model_validate(raw_state) else: state = raw_state deps.state = state elif self.state: warnings.warn( f'State was provided but `deps` of type `{type(deps).__name__}` does not implement the `StateHandler` protocol, so the state was ignored. Use `StateDeps[...]` or implement `StateHandler` to receive AG-UI state.', UserWarning, stacklevel=2, ) return self.agent.run_stream_events( output_type=output_type, message_history=message_history, deferred_tool_results=deferred_tool_results, model=model, deps=deps, model_settings=model_settings, instructions=instructions, usage_limits=usage_limits, usage=usage, infer_name=infer_name, toolsets=toolsets, builtin_tools=builtin_tools, ) def run_stream( self, *, output_type: OutputSpec[Any] | None = None, message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, builtin_tools: Sequence[AbstractBuiltinTool] | None = None, on_complete: OnCompleteFunc[EventT] | None = None, ) -> AsyncIterator[EventT]:  """Run the agent with the protocol-specific run input and stream protocol-specific events.  Args:  output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no  output validators since output validators would expect an argument that matches the agent's output type.  message_history: History of the conversation so far.  deferred_tool_results: Optional results for deferred tool calls in the message history.  model: Optional model to use for this run, required if `model` was not set when creating the agent.  instructions: Optional additional instructions to use for this run.  deps: Optional dependencies to use for this run.  model_settings: Optional settings to use for this model's request.  usage_limits: Optional limits on model request count or token usage.  usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.  infer_name: Whether to try to infer the agent name from the call frame if it's not set.  toolsets: Optional additional toolsets for this run.  builtin_tools: Optional additional builtin tools to use for this run.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  """ return self.transform_stream( self.run_stream_native( output_type=output_type, message_history=message_history, deferred_tool_results=deferred_tool_results, model=model, instructions=instructions, deps=deps, model_settings=model_settings, usage_limits=usage_limits, usage=usage, infer_name=infer_name, toolsets=toolsets, builtin_tools=builtin_tools, ), on_complete=on_complete, ) @classmethod async def dispatch_request( cls, request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT], message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, output_type: OutputSpec[Any] | None = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, builtin_tools: Sequence[AbstractBuiltinTool] | None = None, on_complete: OnCompleteFunc[EventT] | None = None, ) -> Response:  """Handle a protocol-specific HTTP request by running the agent and returning a streaming response of protocol-specific events.  Args:  request: The incoming Starlette/FastAPI request.  agent: The agent to run.  output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no  output validators since output validators would expect an argument that matches the agent's output type.  message_history: History of the conversation so far.  deferred_tool_results: Optional results for deferred tool calls in the message history.  model: Optional model to use for this run, required if `model` was not set when creating the agent.  instructions: Optional additional instructions to use for this run.  deps: Optional dependencies to use for this run.  model_settings: Optional settings to use for this model's request.  usage_limits: Optional limits on model request count or token usage.  usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.  infer_name: Whether to try to infer the agent name from the call frame if it's not set.  toolsets: Optional additional toolsets for this run.  builtin_tools: Optional additional builtin tools to use for this run.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  Returns:  A streaming Starlette response with protocol-specific events encoded per the request's `Accept` header value.  """ try: from starlette.responses import Response except ImportError as e: # pragma: no cover raise ImportError( 'Please install the `starlette` package to use `dispatch_request()` method, ' 'you can use the `ui` optional group — `pip install "pydantic-ai-slim[ui]"`' ) from e try: adapter = await cls.from_request(request, agent=agent) except ValidationError as e: # pragma: no cover return Response( content=e.json(), media_type='application/json', status_code=HTTPStatus.UNPROCESSABLE_ENTITY, ) return adapter.streaming_response( adapter.run_stream( message_history=message_history, deferred_tool_results=deferred_tool_results, deps=deps, output_type=output_type, model=model, instructions=instructions, model_settings=model_settings, usage_limits=usage_limits, usage=usage, infer_name=infer_name, toolsets=toolsets, builtin_tools=builtin_tools, on_complete=on_complete, ), ) 

agent instance-attribute

The Pydantic AI agent to run.

run_input instance-attribute

run_input: RunInputT 

The protocol-specific run input object.

accept class-attribute instance-attribute

accept: str | None = None 

The Accept header value of the request, used to determine how to encode the protocol-specific events for the streaming response.

from_request async classmethod

from_request( request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT] ) -> UIAdapter[ RunInputT, MessageT, EventT, AgentDepsT, OutputDataT ] 

Create an adapter from a request.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
123 124 125 126 127 128 129 130 131 132
@classmethod async def from_request( cls, request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT] ) -> UIAdapter[RunInputT, MessageT, EventT, AgentDepsT, OutputDataT]:  """Create an adapter from a request.""" return cls( agent=agent, run_input=cls.build_run_input(await request.body()), accept=request.headers.get('accept'), ) 

build_run_input abstractmethod classmethod

build_run_input(body: bytes) -> RunInputT 

Build a protocol-specific run input object from the request body.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
134 135 136 137 138
@classmethod @abstractmethod def build_run_input(cls, body: bytes) -> RunInputT:  """Build a protocol-specific run input object from the request body.""" raise NotImplementedError 

load_messages abstractmethod classmethod

load_messages( messages: Sequence[MessageT], ) -> list[ModelMessage] 

Transform protocol-specific messages into Pydantic AI messages.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
140 141 142 143 144
@classmethod @abstractmethod def load_messages(cls, messages: Sequence[MessageT]) -> list[ModelMessage]:  """Transform protocol-specific messages into Pydantic AI messages.""" raise NotImplementedError 

dump_messages classmethod

dump_messages( messages: Sequence[ModelMessage], ) -> list[MessageT] 

Transform Pydantic AI messages into protocol-specific messages.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
146 147 148 149
@classmethod def dump_messages(cls, messages: Sequence[ModelMessage]) -> list[MessageT]:  """Transform Pydantic AI messages into protocol-specific messages.""" raise NotImplementedError 

build_event_stream abstractmethod

build_event_stream() -> ( UIEventStream[ RunInputT, EventT, AgentDepsT, OutputDataT ] ) 

Build a protocol-specific event stream transformer.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
151 152 153 154
@abstractmethod def build_event_stream(self) -> UIEventStream[RunInputT, EventT, AgentDepsT, OutputDataT]:  """Build a protocol-specific event stream transformer.""" raise NotImplementedError 

messages abstractmethod cached property

messages: list[ModelMessage] 

Pydantic AI messages from the protocol-specific run input.

toolset cached property

toolset: AbstractToolset[AgentDepsT] | None 

Toolset representing frontend tools from the protocol-specific run input.

state cached property

state: dict[str, Any] | None 

Frontend state from the protocol-specific run input.

transform_stream

transform_stream( stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None, ) -> AsyncIterator[EventT] 

Transform a stream of Pydantic AI events into protocol-specific events.

Parameters:

Name Type Description Default
stream AsyncIterator[NativeEvent]

The stream of Pydantic AI events to transform.

required
on_complete OnCompleteFunc[EventT] | None

Optional callback function called when the agent run completes successfully. The callback receives the completed AgentRunResult and can optionally yield additional protocol-specific events.

None
Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
172 173 174 175 176 177 178 179 180 181 182 183 184
def transform_stream( self, stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None, ) -> AsyncIterator[EventT]:  """Transform a stream of Pydantic AI events into protocol-specific events.  Args:  stream: The stream of Pydantic AI events to transform.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  """ return self.build_event_stream().transform_stream(stream, on_complete=on_complete) 

encode_stream

encode_stream( stream: AsyncIterator[EventT], ) -> AsyncIterator[str] 

Encode a stream of protocol-specific events as strings according to the Accept header value.

Parameters:

Name Type Description Default
stream AsyncIterator[EventT]

The stream of protocol-specific events to encode.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
186 187 188 189 190 191 192
def encode_stream(self, stream: AsyncIterator[EventT]) -> AsyncIterator[str]:  """Encode a stream of protocol-specific events as strings according to the `Accept` header value.  Args:  stream: The stream of protocol-specific events to encode.  """ return self.build_event_stream().encode_stream(stream) 

streaming_response

streaming_response( stream: AsyncIterator[EventT], ) -> StreamingResponse 

Generate a streaming response from a stream of protocol-specific events.

Parameters:

Name Type Description Default
stream AsyncIterator[EventT]

The stream of protocol-specific events to encode.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
194 195 196 197 198 199 200
def streaming_response(self, stream: AsyncIterator[EventT]) -> StreamingResponse:  """Generate a streaming response from a stream of protocol-specific events.  Args:  stream: The stream of protocol-specific events to encode.  """ return self.build_event_stream().streaming_response(stream) 

run_stream_native

run_stream_native( *, output_type: OutputSpec[Any] | None = None, message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: ( DeferredToolResults | None ) = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: ( Sequence[AbstractToolset[AgentDepsT]] | None ) = None, builtin_tools: ( Sequence[AbstractBuiltinTool] | None ) = None ) -> AsyncIterator[NativeEvent] 

Run the agent with the protocol-specific run input and stream Pydantic AI events.

Parameters:

Name Type Description Default
output_type OutputSpec[Any] | None

Custom output type to use for this run, output_type may only be used if the agent has no output validators since output validators would expect an argument that matches the agent's output type.

None
message_history Sequence[ModelMessage] | None

History of the conversation so far.

None
deferred_tool_results DeferredToolResults | None

Optional results for deferred tool calls in the message history.

None
model Model | KnownModelName | str | None

Optional model to use for this run, required if model was not set when creating the agent.

None
instructions Instructions[AgentDepsT]

Optional additional instructions to use for this run.

None
deps AgentDepsT

Optional dependencies to use for this run.

None
model_settings ModelSettings | None

Optional settings to use for this model's request.

None
usage_limits UsageLimits | None

Optional limits on model request count or token usage.

None
usage RunUsage | None

Optional usage to start with, useful for resuming a conversation or agents used in tools.

None
infer_name bool

Whether to try to infer the agent name from the call frame if it's not set.

True
toolsets Sequence[AbstractToolset[AgentDepsT]] | None

Optional additional toolsets for this run.

None
builtin_tools Sequence[AbstractBuiltinTool] | None

Optional additional builtin tools to use for this run.

None
Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def run_stream_native( self, *, output_type: OutputSpec[Any] | None = None, message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, builtin_tools: Sequence[AbstractBuiltinTool] | None = None, ) -> AsyncIterator[NativeEvent]:  """Run the agent with the protocol-specific run input and stream Pydantic AI events.  Args:  output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no  output validators since output validators would expect an argument that matches the agent's output type.  message_history: History of the conversation so far.  deferred_tool_results: Optional results for deferred tool calls in the message history.  model: Optional model to use for this run, required if `model` was not set when creating the agent.  instructions: Optional additional instructions to use for this run.  deps: Optional dependencies to use for this run.  model_settings: Optional settings to use for this model's request.  usage_limits: Optional limits on model request count or token usage.  usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.  infer_name: Whether to try to infer the agent name from the call frame if it's not set.  toolsets: Optional additional toolsets for this run.  builtin_tools: Optional additional builtin tools to use for this run.  """ message_history = [*(message_history or []), *self.messages] toolset = self.toolset if toolset: output_type = [output_type or self.agent.output_type, DeferredToolRequests] toolsets = [*(toolsets or []), toolset] if isinstance(deps, StateHandler): raw_state = self.state or {} if isinstance(deps.state, BaseModel): state = type(deps.state).model_validate(raw_state) else: state = raw_state deps.state = state elif self.state: warnings.warn( f'State was provided but `deps` of type `{type(deps).__name__}` does not implement the `StateHandler` protocol, so the state was ignored. Use `StateDeps[...]` or implement `StateHandler` to receive AG-UI state.', UserWarning, stacklevel=2, ) return self.agent.run_stream_events( output_type=output_type, message_history=message_history, deferred_tool_results=deferred_tool_results, model=model, deps=deps, model_settings=model_settings, instructions=instructions, usage_limits=usage_limits, usage=usage, infer_name=infer_name, toolsets=toolsets, builtin_tools=builtin_tools, ) 

run_stream

run_stream( *, output_type: OutputSpec[Any] | None = None, message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: ( DeferredToolResults | None ) = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: ( Sequence[AbstractToolset[AgentDepsT]] | None ) = None, builtin_tools: ( Sequence[AbstractBuiltinTool] | None ) = None, on_complete: OnCompleteFunc[EventT] | None = None ) -> AsyncIterator[EventT] 

Run the agent with the protocol-specific run input and stream protocol-specific events.

Parameters:

Name Type Description Default
output_type OutputSpec[Any] | None

Custom output type to use for this run, output_type may only be used if the agent has no output validators since output validators would expect an argument that matches the agent's output type.

None
message_history Sequence[ModelMessage] | None

History of the conversation so far.

None
deferred_tool_results DeferredToolResults | None

Optional results for deferred tool calls in the message history.

None
model Model | KnownModelName | str | None

Optional model to use for this run, required if model was not set when creating the agent.

None
instructions Instructions[AgentDepsT]

Optional additional instructions to use for this run.

None
deps AgentDepsT

Optional dependencies to use for this run.

None
model_settings ModelSettings | None

Optional settings to use for this model's request.

None
usage_limits UsageLimits | None

Optional limits on model request count or token usage.

None
usage RunUsage | None

Optional usage to start with, useful for resuming a conversation or agents used in tools.

None
infer_name bool

Whether to try to infer the agent name from the call frame if it's not set.

True
toolsets Sequence[AbstractToolset[AgentDepsT]] | None

Optional additional toolsets for this run.

None
builtin_tools Sequence[AbstractBuiltinTool] | None

Optional additional builtin tools to use for this run.

None
on_complete OnCompleteFunc[EventT] | None

Optional callback function called when the agent run completes successfully. The callback receives the completed AgentRunResult and can optionally yield additional protocol-specific events.

None
Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
def run_stream( self, *, output_type: OutputSpec[Any] | None = None, message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, builtin_tools: Sequence[AbstractBuiltinTool] | None = None, on_complete: OnCompleteFunc[EventT] | None = None, ) -> AsyncIterator[EventT]:  """Run the agent with the protocol-specific run input and stream protocol-specific events.  Args:  output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no  output validators since output validators would expect an argument that matches the agent's output type.  message_history: History of the conversation so far.  deferred_tool_results: Optional results for deferred tool calls in the message history.  model: Optional model to use for this run, required if `model` was not set when creating the agent.  instructions: Optional additional instructions to use for this run.  deps: Optional dependencies to use for this run.  model_settings: Optional settings to use for this model's request.  usage_limits: Optional limits on model request count or token usage.  usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.  infer_name: Whether to try to infer the agent name from the call frame if it's not set.  toolsets: Optional additional toolsets for this run.  builtin_tools: Optional additional builtin tools to use for this run.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  """ return self.transform_stream( self.run_stream_native( output_type=output_type, message_history=message_history, deferred_tool_results=deferred_tool_results, model=model, instructions=instructions, deps=deps, model_settings=model_settings, usage_limits=usage_limits, usage=usage, infer_name=infer_name, toolsets=toolsets, builtin_tools=builtin_tools, ), on_complete=on_complete, ) 

dispatch_request async classmethod

dispatch_request( request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT], message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: ( DeferredToolResults | None ) = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, output_type: OutputSpec[Any] | None = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: ( Sequence[AbstractToolset[AgentDepsT]] | None ) = None, builtin_tools: ( Sequence[AbstractBuiltinTool] | None ) = None, on_complete: OnCompleteFunc[EventT] | None = None ) -> Response 

Handle a protocol-specific HTTP request by running the agent and returning a streaming response of protocol-specific events.

Parameters:

Name Type Description Default
request Request

The incoming Starlette/FastAPI request.

required
agent AbstractAgent[AgentDepsT, OutputDataT]

The agent to run.

required
output_type OutputSpec[Any] | None

Custom output type to use for this run, output_type may only be used if the agent has no output validators since output validators would expect an argument that matches the agent's output type.

None
message_history Sequence[ModelMessage] | None

History of the conversation so far.

None
deferred_tool_results DeferredToolResults | None

Optional results for deferred tool calls in the message history.

None
model Model | KnownModelName | str | None

Optional model to use for this run, required if model was not set when creating the agent.

None
instructions Instructions[AgentDepsT]

Optional additional instructions to use for this run.

None
deps AgentDepsT

Optional dependencies to use for this run.

None
model_settings ModelSettings | None

Optional settings to use for this model's request.

None
usage_limits UsageLimits | None

Optional limits on model request count or token usage.

None
usage RunUsage | None

Optional usage to start with, useful for resuming a conversation or agents used in tools.

None
infer_name bool

Whether to try to infer the agent name from the call frame if it's not set.

True
toolsets Sequence[AbstractToolset[AgentDepsT]] | None

Optional additional toolsets for this run.

None
builtin_tools Sequence[AbstractBuiltinTool] | None

Optional additional builtin tools to use for this run.

None
on_complete OnCompleteFunc[EventT] | None

Optional callback function called when the agent run completes successfully. The callback receives the completed AgentRunResult and can optionally yield additional protocol-specific events.

None

Returns:

Type Description
Response

A streaming Starlette response with protocol-specific events encoded per the request's Accept header value.

Source code in pydantic_ai_slim/pydantic_ai/ui/_adapter.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
@classmethod async def dispatch_request( cls, request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT], message_history: Sequence[ModelMessage] | None = None, deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, instructions: Instructions[AgentDepsT] = None, deps: AgentDepsT = None, output_type: OutputSpec[Any] | None = None, model_settings: ModelSettings | None = None, usage_limits: UsageLimits | None = None, usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, builtin_tools: Sequence[AbstractBuiltinTool] | None = None, on_complete: OnCompleteFunc[EventT] | None = None, ) -> Response:  """Handle a protocol-specific HTTP request by running the agent and returning a streaming response of protocol-specific events.  Args:  request: The incoming Starlette/FastAPI request.  agent: The agent to run.  output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no  output validators since output validators would expect an argument that matches the agent's output type.  message_history: History of the conversation so far.  deferred_tool_results: Optional results for deferred tool calls in the message history.  model: Optional model to use for this run, required if `model` was not set when creating the agent.  instructions: Optional additional instructions to use for this run.  deps: Optional dependencies to use for this run.  model_settings: Optional settings to use for this model's request.  usage_limits: Optional limits on model request count or token usage.  usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.  infer_name: Whether to try to infer the agent name from the call frame if it's not set.  toolsets: Optional additional toolsets for this run.  builtin_tools: Optional additional builtin tools to use for this run.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  Returns:  A streaming Starlette response with protocol-specific events encoded per the request's `Accept` header value.  """ try: from starlette.responses import Response except ImportError as e: # pragma: no cover raise ImportError( 'Please install the `starlette` package to use `dispatch_request()` method, ' 'you can use the `ui` optional group — `pip install "pydantic-ai-slim[ui]"`' ) from e try: adapter = await cls.from_request(request, agent=agent) except ValidationError as e: # pragma: no cover return Response( content=e.json(), media_type='application/json', status_code=HTTPStatus.UNPROCESSABLE_ENTITY, ) return adapter.streaming_response( adapter.run_stream( message_history=message_history, deferred_tool_results=deferred_tool_results, deps=deps, output_type=output_type, model=model, instructions=instructions, model_settings=model_settings, usage_limits=usage_limits, usage=usage, infer_name=infer_name, toolsets=toolsets, builtin_tools=builtin_tools, on_complete=on_complete, ), ) 

SSE_CONTENT_TYPE module-attribute

SSE_CONTENT_TYPE = 'text/event-stream' 

Content type header value for Server-Sent Events (SSE).

NativeEvent module-attribute

Type alias for the native event type, which is either an AgentStreamEvent or an AgentRunResultEvent.

OnCompleteFunc module-attribute

OnCompleteFunc: TypeAlias = ( Callable[[AgentRunResult[Any]], None] | Callable[[AgentRunResult[Any]], Awaitable[None]] | Callable[[AgentRunResult[Any]], AsyncIterator[EventT]] ) 

Callback function type that receives the AgentRunResult of the completed run. Can be sync, async, or an async generator of protocol-specific events.

UIEventStream dataclass

Bases: ABC, Generic[RunInputT, EventT, AgentDepsT, OutputDataT]

Base class for UI event stream transformers.

This class is responsible for transforming Pydantic AI events into protocol-specific events.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
@dataclass class UIEventStream(ABC, Generic[RunInputT, EventT, AgentDepsT, OutputDataT]):  """Base class for UI event stream transformers.  This class is responsible for transforming Pydantic AI events into protocol-specific events.  """ run_input: RunInputT accept: str | None = None  """The `Accept` header value of the request, used to determine how to encode the protocol-specific events for the streaming response.""" message_id: str = field(default_factory=lambda: str(uuid4()))  """The message ID to use for the next event.""" _turn: Literal['request', 'response'] | None = None _result: AgentRunResult[OutputDataT] | None = None _final_result_event: FinalResultEvent | None = None def new_message_id(self) -> str:  """Generate and store a new message ID.""" self.message_id = str(uuid4()) return self.message_id @property def response_headers(self) -> Mapping[str, str] | None:  """Response headers to return to the frontend.""" return None @property def content_type(self) -> str:  """Get the content type for the event stream, compatible with the `Accept` header value.  By default, this returns the Server-Sent Events content type (`text/event-stream`).  If a subclass supports other types as well, it should consider `self.accept` in [`encode_event()`][pydantic_ai.ui.UIEventStream.encode_event] and return the resulting content type.  """ return SSE_CONTENT_TYPE @abstractmethod def encode_event(self, event: EventT) -> str:  """Encode a protocol-specific event as a string.""" raise NotImplementedError async def encode_stream(self, stream: AsyncIterator[EventT]) -> AsyncIterator[str]:  """Encode a stream of protocol-specific events as strings according to the `Accept` header value.""" async for event in stream: yield self.encode_event(event) def streaming_response(self, stream: AsyncIterator[EventT]) -> StreamingResponse:  """Generate a streaming response from a stream of protocol-specific events.""" try: from starlette.responses import StreamingResponse except ImportError as e: # pragma: no cover raise ImportError( 'Please install the `starlette` package to use the `streaming_response()` method, ' 'you can use the `ui` optional group — `pip install "pydantic-ai-slim[ui]"`' ) from e return StreamingResponse( self.encode_stream(stream), headers=self.response_headers, media_type=self.content_type, ) async def transform_stream( # noqa: C901 self, stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None ) -> AsyncIterator[EventT]:  """Transform a stream of Pydantic AI events into protocol-specific events.  This method dispatches to specific hooks and `handle_*` methods that subclasses can override:  - [`before_stream()`][pydantic_ai.ui.UIEventStream.before_stream]  - [`after_stream()`][pydantic_ai.ui.UIEventStream.after_stream]  - [`on_error()`][pydantic_ai.ui.UIEventStream.on_error]  - [`before_request()`][pydantic_ai.ui.UIEventStream.before_request]  - [`after_request()`][pydantic_ai.ui.UIEventStream.after_request]  - [`before_response()`][pydantic_ai.ui.UIEventStream.before_response]  - [`after_response()`][pydantic_ai.ui.UIEventStream.after_response]  - [`handle_event()`][pydantic_ai.ui.UIEventStream.handle_event]  Args:  stream: The stream of Pydantic AI events to transform.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  """ async for e in self.before_stream(): yield e try: async for event in stream: if isinstance(event, PartStartEvent): async for e in self._turn_to('response'): yield e elif isinstance(event, FunctionToolCallEvent): async for e in self._turn_to('request'): yield e elif isinstance(event, AgentRunResultEvent): if ( self._final_result_event and (tool_call_id := self._final_result_event.tool_call_id) and (tool_name := self._final_result_event.tool_name) ): async for e in self._turn_to('request'): yield e self._final_result_event = None # Ensure the stream does not end on a dangling tool call without a result. output_tool_result_event = FunctionToolResultEvent( result=ToolReturnPart( tool_call_id=tool_call_id, tool_name=tool_name, content='Final result processed.', ) ) async for e in self.handle_function_tool_result(output_tool_result_event): yield e result = cast(AgentRunResult[OutputDataT], event.result) self._result = result async for e in self._turn_to(None): yield e if on_complete is not None: if inspect.isasyncgenfunction(on_complete): async for e in on_complete(result): yield e elif _utils.is_async_callable(on_complete): await on_complete(result) else: await _utils.run_in_executor(on_complete, result) elif isinstance(event, FinalResultEvent): self._final_result_event = event if isinstance(event, BuiltinToolCallEvent | BuiltinToolResultEvent): # pyright: ignore[reportDeprecated] # These events were deprecated before this feature was introduced continue async for e in self.handle_event(event): yield e except Exception as e: async for e in self.on_error(e): yield e finally: async for e in self._turn_to(None): yield e async for e in self.after_stream(): yield e async def _turn_to(self, to_turn: Literal['request', 'response'] | None) -> AsyncIterator[EventT]:  """Fire hooks when turning from request to response or vice versa.""" if to_turn == self._turn: return if self._turn == 'request': async for e in self.after_request(): yield e elif self._turn == 'response': async for e in self.after_response(): yield e self._turn = to_turn if to_turn == 'request': async for e in self.before_request(): yield e elif to_turn == 'response': async for e in self.before_response(): yield e async def handle_event(self, event: NativeEvent) -> AsyncIterator[EventT]:  """Transform a Pydantic AI event into one or more protocol-specific events.  This method dispatches to specific `handle_*` methods based on event type:  - [`PartStartEvent`][pydantic_ai.messages.PartStartEvent] -> [`handle_part_start()`][pydantic_ai.ui.UIEventStream.handle_part_start]  - [`PartDeltaEvent`][pydantic_ai.messages.PartDeltaEvent] -> `handle_part_delta`  - [`PartEndEvent`][pydantic_ai.messages.PartEndEvent] -> `handle_part_end`  - [`FinalResultEvent`][pydantic_ai.messages.FinalResultEvent] -> `handle_final_result`  - [`FunctionToolCallEvent`][pydantic_ai.messages.FunctionToolCallEvent] -> `handle_function_tool_call`  - [`FunctionToolResultEvent`][pydantic_ai.messages.FunctionToolResultEvent] -> `handle_function_tool_result`  - [`AgentRunResultEvent`][pydantic_ai.run.AgentRunResultEvent] -> `handle_run_result`  Subclasses are encouraged to override the individual `handle_*` methods rather than this one.  If you need specific behavior for all events, make sure you call the super method.  """ match event: case PartStartEvent(): async for e in self.handle_part_start(event): yield e case PartDeltaEvent(): async for e in self.handle_part_delta(event): yield e case PartEndEvent(): async for e in self.handle_part_end(event): yield e case FinalResultEvent(): async for e in self.handle_final_result(event): yield e case FunctionToolCallEvent(): async for e in self.handle_function_tool_call(event): yield e case FunctionToolResultEvent(): async for e in self.handle_function_tool_result(event): yield e case AgentRunResultEvent(): async for e in self.handle_run_result(event): yield e case _: pass async def handle_part_start(self, event: PartStartEvent) -> AsyncIterator[EventT]:  """Handle a `PartStartEvent`.  This method dispatches to specific `handle_*` methods based on part type:  - [`TextPart`][pydantic_ai.messages.TextPart] -> [`handle_text_start()`][pydantic_ai.ui.UIEventStream.handle_text_start]  - [`ThinkingPart`][pydantic_ai.messages.ThinkingPart] -> [`handle_thinking_start()`][pydantic_ai.ui.UIEventStream.handle_thinking_start]  - [`ToolCallPart`][pydantic_ai.messages.ToolCallPart] -> [`handle_tool_call_start()`][pydantic_ai.ui.UIEventStream.handle_tool_call_start]  - [`BuiltinToolCallPart`][pydantic_ai.messages.BuiltinToolCallPart] -> [`handle_builtin_tool_call_start()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_call_start]  - [`BuiltinToolReturnPart`][pydantic_ai.messages.BuiltinToolReturnPart] -> [`handle_builtin_tool_return()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_return]  - [`FilePart`][pydantic_ai.messages.FilePart] -> [`handle_file()`][pydantic_ai.ui.UIEventStream.handle_file]  Subclasses are encouraged to override the individual `handle_*` methods rather than this one.  If you need specific behavior for all part start events, make sure you call the super method.  Args:  event: The part start event.  """ part = event.part previous_part_kind = event.previous_part_kind match part: case TextPart(): async for e in self.handle_text_start(part, follows_text=previous_part_kind == 'text'): yield e case ThinkingPart(): async for e in self.handle_thinking_start(part, follows_thinking=previous_part_kind == 'thinking'): yield e case ToolCallPart(): async for e in self.handle_tool_call_start(part): yield e case BuiltinToolCallPart(): async for e in self.handle_builtin_tool_call_start(part): yield e case BuiltinToolReturnPart(): async for e in self.handle_builtin_tool_return(part): yield e case FilePart(): # pragma: no branch async for e in self.handle_file(part): yield e async def handle_part_delta(self, event: PartDeltaEvent) -> AsyncIterator[EventT]:  """Handle a PartDeltaEvent.  This method dispatches to specific `handle_*_delta` methods based on part delta type:  - [`TextPartDelta`][pydantic_ai.messages.TextPartDelta] -> [`handle_text_delta()`][pydantic_ai.ui.UIEventStream.handle_text_delta]  - [`ThinkingPartDelta`][pydantic_ai.messages.ThinkingPartDelta] -> [`handle_thinking_delta()`][pydantic_ai.ui.UIEventStream.handle_thinking_delta]  - [`ToolCallPartDelta`][pydantic_ai.messages.ToolCallPartDelta] -> [`handle_tool_call_delta()`][pydantic_ai.ui.UIEventStream.handle_tool_call_delta]  Subclasses are encouraged to override the individual `handle_*_delta` methods rather than this one.  If you need specific behavior for all part delta events, make sure you call the super method.  Args:  event: The PartDeltaEvent.  """ delta = event.delta match delta: case TextPartDelta(): async for e in self.handle_text_delta(delta): yield e case ThinkingPartDelta(): async for e in self.handle_thinking_delta(delta): yield e case ToolCallPartDelta(): # pragma: no branch async for e in self.handle_tool_call_delta(delta): yield e async def handle_part_end(self, event: PartEndEvent) -> AsyncIterator[EventT]:  """Handle a `PartEndEvent`.  This method dispatches to specific `handle_*_end` methods based on part type:  - [`TextPart`][pydantic_ai.messages.TextPart] -> [`handle_text_end()`][pydantic_ai.ui.UIEventStream.handle_text_end]  - [`ThinkingPart`][pydantic_ai.messages.ThinkingPart] -> [`handle_thinking_end()`][pydantic_ai.ui.UIEventStream.handle_thinking_end]  - [`ToolCallPart`][pydantic_ai.messages.ToolCallPart] -> [`handle_tool_call_end()`][pydantic_ai.ui.UIEventStream.handle_tool_call_end]  - [`BuiltinToolCallPart`][pydantic_ai.messages.BuiltinToolCallPart] -> [`handle_builtin_tool_call_end()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_call_end]  Subclasses are encouraged to override the individual `handle_*_end` methods rather than this one.  If you need specific behavior for all part end events, make sure you call the super method.  Args:  event: The part end event.  """ part = event.part next_part_kind = event.next_part_kind match part: case TextPart(): async for e in self.handle_text_end(part, followed_by_text=next_part_kind == 'text'): yield e case ThinkingPart(): async for e in self.handle_thinking_end(part, followed_by_thinking=next_part_kind == 'thinking'): yield e case ToolCallPart(): async for e in self.handle_tool_call_end(part): yield e case BuiltinToolCallPart(): async for e in self.handle_builtin_tool_call_end(part): yield e case BuiltinToolReturnPart() | FilePart(): # pragma: no cover # These don't have deltas, so they don't need to be ended. pass async def before_stream(self) -> AsyncIterator[EventT]:  """Yield events before agent streaming starts.  This hook is called before any agent events are processed.  Override this to inject custom events at the start of the stream.  """ return # pragma: no cover yield # Make this an async generator async def after_stream(self) -> AsyncIterator[EventT]:  """Yield events after agent streaming completes.  This hook is called after all agent events have been processed.  Override this to inject custom events at the end of the stream.  """ return # pragma: no cover yield # Make this an async generator async def on_error(self, error: Exception) -> AsyncIterator[EventT]:  """Handle errors that occur during streaming.  Args:  error: The error that occurred during streaming.  """ return # pragma: no cover yield # Make this an async generator async def before_request(self) -> AsyncIterator[EventT]:  """Yield events before a model request is processed.  Override this to inject custom events at the start of the request.  """ return # pragma: lax no cover yield # Make this an async generator async def after_request(self) -> AsyncIterator[EventT]:  """Yield events after a model request is processed.  Override this to inject custom events at the end of the request.  """ return # pragma: lax no cover yield # Make this an async generator async def before_response(self) -> AsyncIterator[EventT]:  """Yield events before a model response is processed.  Override this to inject custom events at the start of the response.  """ return # pragma: no cover yield # Make this an async generator async def after_response(self) -> AsyncIterator[EventT]:  """Yield events after a model response is processed.  Override this to inject custom events at the end of the response.  """ return # pragma: lax no cover yield # Make this an async generator async def handle_text_start(self, part: TextPart, follows_text: bool = False) -> AsyncIterator[EventT]:  """Handle the start of a `TextPart`.  Args:  part: The text part.  follows_text: Whether the part is directly preceded by another text part. In this case, you may want to yield a "text-delta" event instead of a "text-start" event.  """ return # pragma: no cover yield # Make this an async generator async def handle_text_delta(self, delta: TextPartDelta) -> AsyncIterator[EventT]:  """Handle a `TextPartDelta`.  Args:  delta: The text part delta.  """ return # pragma: no cover yield # Make this an async generator async def handle_text_end(self, part: TextPart, followed_by_text: bool = False) -> AsyncIterator[EventT]:  """Handle the end of a `TextPart`.  Args:  part: The text part.  followed_by_text: Whether the part is directly followed by another text part. In this case, you may not want to yield a "text-end" event yet.  """ return # pragma: no cover yield # Make this an async generator async def handle_thinking_start(self, part: ThinkingPart, follows_thinking: bool = False) -> AsyncIterator[EventT]:  """Handle the start of a `ThinkingPart`.  Args:  part: The thinking part.  follows_thinking: Whether the part is directly preceded by another thinking part. In this case, you may want to yield a "thinking-delta" event instead of a "thinking-start" event.  """ return # pragma: no cover yield # Make this an async generator async def handle_thinking_delta(self, delta: ThinkingPartDelta) -> AsyncIterator[EventT]:  """Handle a `ThinkingPartDelta`.  Args:  delta: The thinking part delta.  """ return # pragma: no cover yield # Make this an async generator async def handle_thinking_end( self, part: ThinkingPart, followed_by_thinking: bool = False ) -> AsyncIterator[EventT]:  """Handle the end of a `ThinkingPart`.  Args:  part: The thinking part.  followed_by_thinking: Whether the part is directly followed by another thinking part. In this case, you may not want to yield a "thinking-end" event yet.  """ return # pragma: no cover yield # Make this an async generator async def handle_tool_call_start(self, part: ToolCallPart) -> AsyncIterator[EventT]:  """Handle the start of a `ToolCallPart`.  Args:  part: The tool call part.  """ return # pragma: no cover yield # Make this an async generator async def handle_tool_call_delta(self, delta: ToolCallPartDelta) -> AsyncIterator[EventT]:  """Handle a `ToolCallPartDelta`.  Args:  delta: The tool call part delta.  """ return # pragma: no cover yield # Make this an async generator async def handle_tool_call_end(self, part: ToolCallPart) -> AsyncIterator[EventT]:  """Handle the end of a `ToolCallPart`.  Args:  part: The tool call part.  """ return # pragma: no cover yield # Make this an async generator async def handle_builtin_tool_call_start(self, part: BuiltinToolCallPart) -> AsyncIterator[EventT]:  """Handle a `BuiltinToolCallPart` at start.  Args:  part: The builtin tool call part.  """ return # pragma: no cover yield # Make this an async generator async def handle_builtin_tool_call_end(self, part: BuiltinToolCallPart) -> AsyncIterator[EventT]:  """Handle the end of a `BuiltinToolCallPart`.  Args:  part: The builtin tool call part.  """ return # pragma: no cover yield # Make this an async generator async def handle_builtin_tool_return(self, part: BuiltinToolReturnPart) -> AsyncIterator[EventT]:  """Handle a `BuiltinToolReturnPart`.  Args:  part: The builtin tool return part.  """ return # pragma: no cover yield # Make this an async generator async def handle_file(self, part: FilePart) -> AsyncIterator[EventT]:  """Handle a `FilePart`.  Args:  part: The file part.  """ return # pragma: no cover yield # Make this an async generator async def handle_final_result(self, event: FinalResultEvent) -> AsyncIterator[EventT]:  """Handle a `FinalResultEvent`.  Args:  event: The final result event.  """ return yield # Make this an async generator async def handle_function_tool_call(self, event: FunctionToolCallEvent) -> AsyncIterator[EventT]:  """Handle a `FunctionToolCallEvent`.  Args:  event: The function tool call event.  """ return yield # Make this an async generator async def handle_function_tool_result(self, event: FunctionToolResultEvent) -> AsyncIterator[EventT]:  """Handle a `FunctionToolResultEvent`.  Args:  event: The function tool result event.  """ return # pragma: no cover yield # Make this an async generator async def handle_run_result(self, event: AgentRunResultEvent) -> AsyncIterator[EventT]:  """Handle an `AgentRunResultEvent`.  Args:  event: The agent run result event.  """ return yield # Make this an async generator 

accept class-attribute instance-attribute

accept: str | None = None 

The Accept header value of the request, used to determine how to encode the protocol-specific events for the streaming response.

message_id class-attribute instance-attribute

message_id: str = field( default_factory=lambda: str(uuid4()) ) 

The message ID to use for the next event.

new_message_id

new_message_id() -> str 

Generate and store a new message ID.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
81 82 83 84
def new_message_id(self) -> str:  """Generate and store a new message ID.""" self.message_id = str(uuid4()) return self.message_id 

response_headers property

response_headers: Mapping[str, str] | None 

Response headers to return to the frontend.

content_type property

content_type: str 

Get the content type for the event stream, compatible with the Accept header value.

By default, this returns the Server-Sent Events content type (text/event-stream). If a subclass supports other types as well, it should consider self.accept in encode_event() and return the resulting content type.

encode_event abstractmethod

encode_event(event: EventT) -> str 

Encode a protocol-specific event as a string.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
100 101 102 103
@abstractmethod def encode_event(self, event: EventT) -> str:  """Encode a protocol-specific event as a string.""" raise NotImplementedError 

encode_stream async

encode_stream( stream: AsyncIterator[EventT], ) -> AsyncIterator[str] 

Encode a stream of protocol-specific events as strings according to the Accept header value.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
105 106 107 108
async def encode_stream(self, stream: AsyncIterator[EventT]) -> AsyncIterator[str]:  """Encode a stream of protocol-specific events as strings according to the `Accept` header value.""" async for event in stream: yield self.encode_event(event) 

streaming_response

streaming_response( stream: AsyncIterator[EventT], ) -> StreamingResponse 

Generate a streaming response from a stream of protocol-specific events.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def streaming_response(self, stream: AsyncIterator[EventT]) -> StreamingResponse:  """Generate a streaming response from a stream of protocol-specific events.""" try: from starlette.responses import StreamingResponse except ImportError as e: # pragma: no cover raise ImportError( 'Please install the `starlette` package to use the `streaming_response()` method, ' 'you can use the `ui` optional group — `pip install "pydantic-ai-slim[ui]"`' ) from e return StreamingResponse( self.encode_stream(stream), headers=self.response_headers, media_type=self.content_type, ) 

transform_stream async

transform_stream( stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None, ) -> AsyncIterator[EventT] 

Transform a stream of Pydantic AI events into protocol-specific events.

This method dispatches to specific hooks and handle_* methods that subclasses can override: - before_stream() - after_stream() - on_error() - before_request() - after_request() - before_response() - after_response() - handle_event()

Parameters:

Name Type Description Default
stream AsyncIterator[NativeEvent]

The stream of Pydantic AI events to transform.

required
on_complete OnCompleteFunc[EventT] | None

Optional callback function called when the agent run completes successfully. The callback receives the completed AgentRunResult and can optionally yield additional protocol-specific events.

None
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
async def transform_stream( # noqa: C901 self, stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None ) -> AsyncIterator[EventT]:  """Transform a stream of Pydantic AI events into protocol-specific events.  This method dispatches to specific hooks and `handle_*` methods that subclasses can override:  - [`before_stream()`][pydantic_ai.ui.UIEventStream.before_stream]  - [`after_stream()`][pydantic_ai.ui.UIEventStream.after_stream]  - [`on_error()`][pydantic_ai.ui.UIEventStream.on_error]  - [`before_request()`][pydantic_ai.ui.UIEventStream.before_request]  - [`after_request()`][pydantic_ai.ui.UIEventStream.after_request]  - [`before_response()`][pydantic_ai.ui.UIEventStream.before_response]  - [`after_response()`][pydantic_ai.ui.UIEventStream.after_response]  - [`handle_event()`][pydantic_ai.ui.UIEventStream.handle_event]  Args:  stream: The stream of Pydantic AI events to transform.  on_complete: Optional callback function called when the agent run completes successfully.  The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events.  """ async for e in self.before_stream(): yield e try: async for event in stream: if isinstance(event, PartStartEvent): async for e in self._turn_to('response'): yield e elif isinstance(event, FunctionToolCallEvent): async for e in self._turn_to('request'): yield e elif isinstance(event, AgentRunResultEvent): if ( self._final_result_event and (tool_call_id := self._final_result_event.tool_call_id) and (tool_name := self._final_result_event.tool_name) ): async for e in self._turn_to('request'): yield e self._final_result_event = None # Ensure the stream does not end on a dangling tool call without a result. output_tool_result_event = FunctionToolResultEvent( result=ToolReturnPart( tool_call_id=tool_call_id, tool_name=tool_name, content='Final result processed.', ) ) async for e in self.handle_function_tool_result(output_tool_result_event): yield e result = cast(AgentRunResult[OutputDataT], event.result) self._result = result async for e in self._turn_to(None): yield e if on_complete is not None: if inspect.isasyncgenfunction(on_complete): async for e in on_complete(result): yield e elif _utils.is_async_callable(on_complete): await on_complete(result) else: await _utils.run_in_executor(on_complete, result) elif isinstance(event, FinalResultEvent): self._final_result_event = event if isinstance(event, BuiltinToolCallEvent | BuiltinToolResultEvent): # pyright: ignore[reportDeprecated] # These events were deprecated before this feature was introduced continue async for e in self.handle_event(event): yield e except Exception as e: async for e in self.on_error(e): yield e finally: async for e in self._turn_to(None): yield e async for e in self.after_stream(): yield e 

handle_event async

handle_event(event: NativeEvent) -> AsyncIterator[EventT] 

Transform a Pydantic AI event into one or more protocol-specific events.

This method dispatches to specific handle_* methods based on event type:

Subclasses are encouraged to override the individual handle_* methods rather than this one. If you need specific behavior for all events, make sure you call the super method.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
async def handle_event(self, event: NativeEvent) -> AsyncIterator[EventT]:  """Transform a Pydantic AI event into one or more protocol-specific events.  This method dispatches to specific `handle_*` methods based on event type:  - [`PartStartEvent`][pydantic_ai.messages.PartStartEvent] -> [`handle_part_start()`][pydantic_ai.ui.UIEventStream.handle_part_start]  - [`PartDeltaEvent`][pydantic_ai.messages.PartDeltaEvent] -> `handle_part_delta`  - [`PartEndEvent`][pydantic_ai.messages.PartEndEvent] -> `handle_part_end`  - [`FinalResultEvent`][pydantic_ai.messages.FinalResultEvent] -> `handle_final_result`  - [`FunctionToolCallEvent`][pydantic_ai.messages.FunctionToolCallEvent] -> `handle_function_tool_call`  - [`FunctionToolResultEvent`][pydantic_ai.messages.FunctionToolResultEvent] -> `handle_function_tool_result`  - [`AgentRunResultEvent`][pydantic_ai.run.AgentRunResultEvent] -> `handle_run_result`  Subclasses are encouraged to override the individual `handle_*` methods rather than this one.  If you need specific behavior for all events, make sure you call the super method.  """ match event: case PartStartEvent(): async for e in self.handle_part_start(event): yield e case PartDeltaEvent(): async for e in self.handle_part_delta(event): yield e case PartEndEvent(): async for e in self.handle_part_end(event): yield e case FinalResultEvent(): async for e in self.handle_final_result(event): yield e case FunctionToolCallEvent(): async for e in self.handle_function_tool_call(event): yield e case FunctionToolResultEvent(): async for e in self.handle_function_tool_result(event): yield e case AgentRunResultEvent(): async for e in self.handle_run_result(event): yield e case _: pass 

handle_part_start async

handle_part_start( event: PartStartEvent, ) -> AsyncIterator[EventT] 

Handle a PartStartEvent.

This method dispatches to specific handle_* methods based on part type:

Subclasses are encouraged to override the individual handle_* methods rather than this one. If you need specific behavior for all part start events, make sure you call the super method.

Parameters:

Name Type Description Default
event PartStartEvent

The part start event.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
async def handle_part_start(self, event: PartStartEvent) -> AsyncIterator[EventT]:  """Handle a `PartStartEvent`.  This method dispatches to specific `handle_*` methods based on part type:  - [`TextPart`][pydantic_ai.messages.TextPart] -> [`handle_text_start()`][pydantic_ai.ui.UIEventStream.handle_text_start]  - [`ThinkingPart`][pydantic_ai.messages.ThinkingPart] -> [`handle_thinking_start()`][pydantic_ai.ui.UIEventStream.handle_thinking_start]  - [`ToolCallPart`][pydantic_ai.messages.ToolCallPart] -> [`handle_tool_call_start()`][pydantic_ai.ui.UIEventStream.handle_tool_call_start]  - [`BuiltinToolCallPart`][pydantic_ai.messages.BuiltinToolCallPart] -> [`handle_builtin_tool_call_start()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_call_start]  - [`BuiltinToolReturnPart`][pydantic_ai.messages.BuiltinToolReturnPart] -> [`handle_builtin_tool_return()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_return]  - [`FilePart`][pydantic_ai.messages.FilePart] -> [`handle_file()`][pydantic_ai.ui.UIEventStream.handle_file]  Subclasses are encouraged to override the individual `handle_*` methods rather than this one.  If you need specific behavior for all part start events, make sure you call the super method.  Args:  event: The part start event.  """ part = event.part previous_part_kind = event.previous_part_kind match part: case TextPart(): async for e in self.handle_text_start(part, follows_text=previous_part_kind == 'text'): yield e case ThinkingPart(): async for e in self.handle_thinking_start(part, follows_thinking=previous_part_kind == 'thinking'): yield e case ToolCallPart(): async for e in self.handle_tool_call_start(part): yield e case BuiltinToolCallPart(): async for e in self.handle_builtin_tool_call_start(part): yield e case BuiltinToolReturnPart(): async for e in self.handle_builtin_tool_return(part): yield e case FilePart(): # pragma: no branch async for e in self.handle_file(part): yield e 

handle_part_delta async

handle_part_delta( event: PartDeltaEvent, ) -> AsyncIterator[EventT] 

Handle a PartDeltaEvent.

This method dispatches to specific handle_*_delta methods based on part delta type:

Subclasses are encouraged to override the individual handle_*_delta methods rather than this one. If you need specific behavior for all part delta events, make sure you call the super method.

Parameters:

Name Type Description Default
event PartDeltaEvent

The PartDeltaEvent.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
async def handle_part_delta(self, event: PartDeltaEvent) -> AsyncIterator[EventT]:  """Handle a PartDeltaEvent.  This method dispatches to specific `handle_*_delta` methods based on part delta type:  - [`TextPartDelta`][pydantic_ai.messages.TextPartDelta] -> [`handle_text_delta()`][pydantic_ai.ui.UIEventStream.handle_text_delta]  - [`ThinkingPartDelta`][pydantic_ai.messages.ThinkingPartDelta] -> [`handle_thinking_delta()`][pydantic_ai.ui.UIEventStream.handle_thinking_delta]  - [`ToolCallPartDelta`][pydantic_ai.messages.ToolCallPartDelta] -> [`handle_tool_call_delta()`][pydantic_ai.ui.UIEventStream.handle_tool_call_delta]  Subclasses are encouraged to override the individual `handle_*_delta` methods rather than this one.  If you need specific behavior for all part delta events, make sure you call the super method.  Args:  event: The PartDeltaEvent.  """ delta = event.delta match delta: case TextPartDelta(): async for e in self.handle_text_delta(delta): yield e case ThinkingPartDelta(): async for e in self.handle_thinking_delta(delta): yield e case ToolCallPartDelta(): # pragma: no branch async for e in self.handle_tool_call_delta(delta): yield e 

handle_part_end async

handle_part_end( event: PartEndEvent, ) -> AsyncIterator[EventT] 

Handle a PartEndEvent.

This method dispatches to specific handle_*_end methods based on part type:

Subclasses are encouraged to override the individual handle_*_end methods rather than this one. If you need specific behavior for all part end events, make sure you call the super method.

Parameters:

Name Type Description Default
event PartEndEvent

The part end event.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
async def handle_part_end(self, event: PartEndEvent) -> AsyncIterator[EventT]:  """Handle a `PartEndEvent`.  This method dispatches to specific `handle_*_end` methods based on part type:  - [`TextPart`][pydantic_ai.messages.TextPart] -> [`handle_text_end()`][pydantic_ai.ui.UIEventStream.handle_text_end]  - [`ThinkingPart`][pydantic_ai.messages.ThinkingPart] -> [`handle_thinking_end()`][pydantic_ai.ui.UIEventStream.handle_thinking_end]  - [`ToolCallPart`][pydantic_ai.messages.ToolCallPart] -> [`handle_tool_call_end()`][pydantic_ai.ui.UIEventStream.handle_tool_call_end]  - [`BuiltinToolCallPart`][pydantic_ai.messages.BuiltinToolCallPart] -> [`handle_builtin_tool_call_end()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_call_end]  Subclasses are encouraged to override the individual `handle_*_end` methods rather than this one.  If you need specific behavior for all part end events, make sure you call the super method.  Args:  event: The part end event.  """ part = event.part next_part_kind = event.next_part_kind match part: case TextPart(): async for e in self.handle_text_end(part, followed_by_text=next_part_kind == 'text'): yield e case ThinkingPart(): async for e in self.handle_thinking_end(part, followed_by_thinking=next_part_kind == 'thinking'): yield e case ToolCallPart(): async for e in self.handle_tool_call_end(part): yield e case BuiltinToolCallPart(): async for e in self.handle_builtin_tool_call_end(part): yield e case BuiltinToolReturnPart() | FilePart(): # pragma: no cover # These don't have deltas, so they don't need to be ended. pass 

before_stream async

before_stream() -> AsyncIterator[EventT] 

Yield events before agent streaming starts.

This hook is called before any agent events are processed. Override this to inject custom events at the start of the stream.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
375 376 377 378 379 380 381 382
async def before_stream(self) -> AsyncIterator[EventT]:  """Yield events before agent streaming starts.  This hook is called before any agent events are processed.  Override this to inject custom events at the start of the stream.  """ return # pragma: no cover yield # Make this an async generator 

after_stream async

after_stream() -> AsyncIterator[EventT] 

Yield events after agent streaming completes.

This hook is called after all agent events have been processed. Override this to inject custom events at the end of the stream.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
384 385 386 387 388 389 390 391
async def after_stream(self) -> AsyncIterator[EventT]:  """Yield events after agent streaming completes.  This hook is called after all agent events have been processed.  Override this to inject custom events at the end of the stream.  """ return # pragma: no cover yield # Make this an async generator 

on_error async

on_error(error: Exception) -> AsyncIterator[EventT] 

Handle errors that occur during streaming.

Parameters:

Name Type Description Default
error Exception

The error that occurred during streaming.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
393 394 395 396 397 398 399 400
async def on_error(self, error: Exception) -> AsyncIterator[EventT]:  """Handle errors that occur during streaming.  Args:  error: The error that occurred during streaming.  """ return # pragma: no cover yield # Make this an async generator 

before_request async

before_request() -> AsyncIterator[EventT] 

Yield events before a model request is processed.

Override this to inject custom events at the start of the request.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
402 403 404 405 406 407 408
async def before_request(self) -> AsyncIterator[EventT]:  """Yield events before a model request is processed.  Override this to inject custom events at the start of the request.  """ return # pragma: lax no cover yield # Make this an async generator 

after_request async

after_request() -> AsyncIterator[EventT] 

Yield events after a model request is processed.

Override this to inject custom events at the end of the request.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
410 411 412 413 414 415 416
async def after_request(self) -> AsyncIterator[EventT]:  """Yield events after a model request is processed.  Override this to inject custom events at the end of the request.  """ return # pragma: lax no cover yield # Make this an async generator 

before_response async

before_response() -> AsyncIterator[EventT] 

Yield events before a model response is processed.

Override this to inject custom events at the start of the response.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
418 419 420 421 422 423 424
async def before_response(self) -> AsyncIterator[EventT]:  """Yield events before a model response is processed.  Override this to inject custom events at the start of the response.  """ return # pragma: no cover yield # Make this an async generator 

after_response async

after_response() -> AsyncIterator[EventT] 

Yield events after a model response is processed.

Override this to inject custom events at the end of the response.

Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
426 427 428 429 430 431 432
async def after_response(self) -> AsyncIterator[EventT]:  """Yield events after a model response is processed.  Override this to inject custom events at the end of the response.  """ return # pragma: lax no cover yield # Make this an async generator 

handle_text_start async

handle_text_start( part: TextPart, follows_text: bool = False ) -> AsyncIterator[EventT] 

Handle the start of a TextPart.

Parameters:

Name Type Description Default
part TextPart

The text part.

required
follows_text bool

Whether the part is directly preceded by another text part. In this case, you may want to yield a "text-delta" event instead of a "text-start" event.

False
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
434 435 436 437 438 439 440 441 442
async def handle_text_start(self, part: TextPart, follows_text: bool = False) -> AsyncIterator[EventT]:  """Handle the start of a `TextPart`.  Args:  part: The text part.  follows_text: Whether the part is directly preceded by another text part. In this case, you may want to yield a "text-delta" event instead of a "text-start" event.  """ return # pragma: no cover yield # Make this an async generator 

handle_text_delta async

handle_text_delta( delta: TextPartDelta, ) -> AsyncIterator[EventT] 

Handle a TextPartDelta.

Parameters:

Name Type Description Default
delta TextPartDelta

The text part delta.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
444 445 446 447 448 449 450 451
async def handle_text_delta(self, delta: TextPartDelta) -> AsyncIterator[EventT]:  """Handle a `TextPartDelta`.  Args:  delta: The text part delta.  """ return # pragma: no cover yield # Make this an async generator 

handle_text_end async

handle_text_end( part: TextPart, followed_by_text: bool = False ) -> AsyncIterator[EventT] 

Handle the end of a TextPart.

Parameters:

Name Type Description Default
part TextPart

The text part.

required
followed_by_text bool

Whether the part is directly followed by another text part. In this case, you may not want to yield a "text-end" event yet.

False
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
453 454 455 456 457 458 459 460 461
async def handle_text_end(self, part: TextPart, followed_by_text: bool = False) -> AsyncIterator[EventT]:  """Handle the end of a `TextPart`.  Args:  part: The text part.  followed_by_text: Whether the part is directly followed by another text part. In this case, you may not want to yield a "text-end" event yet.  """ return # pragma: no cover yield # Make this an async generator 

handle_thinking_start async

handle_thinking_start( part: ThinkingPart, follows_thinking: bool = False ) -> AsyncIterator[EventT] 

Handle the start of a ThinkingPart.

Parameters:

Name Type Description Default
part ThinkingPart

The thinking part.

required
follows_thinking bool

Whether the part is directly preceded by another thinking part. In this case, you may want to yield a "thinking-delta" event instead of a "thinking-start" event.

False
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
463 464 465 466 467 468 469 470 471
async def handle_thinking_start(self, part: ThinkingPart, follows_thinking: bool = False) -> AsyncIterator[EventT]:  """Handle the start of a `ThinkingPart`.  Args:  part: The thinking part.  follows_thinking: Whether the part is directly preceded by another thinking part. In this case, you may want to yield a "thinking-delta" event instead of a "thinking-start" event.  """ return # pragma: no cover yield # Make this an async generator 

handle_thinking_delta async

handle_thinking_delta( delta: ThinkingPartDelta, ) -> AsyncIterator[EventT] 

Handle a ThinkingPartDelta.

Parameters:

Name Type Description Default
delta ThinkingPartDelta

The thinking part delta.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
473 474 475 476 477 478 479 480
async def handle_thinking_delta(self, delta: ThinkingPartDelta) -> AsyncIterator[EventT]:  """Handle a `ThinkingPartDelta`.  Args:  delta: The thinking part delta.  """ return # pragma: no cover yield # Make this an async generator 

handle_thinking_end async

handle_thinking_end( part: ThinkingPart, followed_by_thinking: bool = False ) -> AsyncIterator[EventT] 

Handle the end of a ThinkingPart.

Parameters:

Name Type Description Default
part ThinkingPart

The thinking part.

required
followed_by_thinking bool

Whether the part is directly followed by another thinking part. In this case, you may not want to yield a "thinking-end" event yet.

False
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
482 483 484 485 486 487 488 489 490 491 492
async def handle_thinking_end( self, part: ThinkingPart, followed_by_thinking: bool = False ) -> AsyncIterator[EventT]:  """Handle the end of a `ThinkingPart`.  Args:  part: The thinking part.  followed_by_thinking: Whether the part is directly followed by another thinking part. In this case, you may not want to yield a "thinking-end" event yet.  """ return # pragma: no cover yield # Make this an async generator 

handle_tool_call_start async

handle_tool_call_start( part: ToolCallPart, ) -> AsyncIterator[EventT] 

Handle the start of a ToolCallPart.

Parameters:

Name Type Description Default
part ToolCallPart

The tool call part.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
494 495 496 497 498 499 500 501
async def handle_tool_call_start(self, part: ToolCallPart) -> AsyncIterator[EventT]:  """Handle the start of a `ToolCallPart`.  Args:  part: The tool call part.  """ return # pragma: no cover yield # Make this an async generator 

handle_tool_call_delta async

handle_tool_call_delta( delta: ToolCallPartDelta, ) -> AsyncIterator[EventT] 

Handle a ToolCallPartDelta.

Parameters:

Name Type Description Default
delta ToolCallPartDelta

The tool call part delta.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
503 504 505 506 507 508 509 510
async def handle_tool_call_delta(self, delta: ToolCallPartDelta) -> AsyncIterator[EventT]:  """Handle a `ToolCallPartDelta`.  Args:  delta: The tool call part delta.  """ return # pragma: no cover yield # Make this an async generator 

handle_tool_call_end async

handle_tool_call_end( part: ToolCallPart, ) -> AsyncIterator[EventT] 

Handle the end of a ToolCallPart.

Parameters:

Name Type Description Default
part ToolCallPart

The tool call part.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
512 513 514 515 516 517 518 519
async def handle_tool_call_end(self, part: ToolCallPart) -> AsyncIterator[EventT]:  """Handle the end of a `ToolCallPart`.  Args:  part: The tool call part.  """ return # pragma: no cover yield # Make this an async generator 

handle_builtin_tool_call_start async

handle_builtin_tool_call_start( part: BuiltinToolCallPart, ) -> AsyncIterator[EventT] 

Handle a BuiltinToolCallPart at start.

Parameters:

Name Type Description Default
part BuiltinToolCallPart

The builtin tool call part.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
521 522 523 524 525 526 527 528
async def handle_builtin_tool_call_start(self, part: BuiltinToolCallPart) -> AsyncIterator[EventT]:  """Handle a `BuiltinToolCallPart` at start.  Args:  part: The builtin tool call part.  """ return # pragma: no cover yield # Make this an async generator 

handle_builtin_tool_call_end async

handle_builtin_tool_call_end( part: BuiltinToolCallPart, ) -> AsyncIterator[EventT] 

Handle the end of a BuiltinToolCallPart.

Parameters:

Name Type Description Default
part BuiltinToolCallPart

The builtin tool call part.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
530 531 532 533 534 535 536 537
async def handle_builtin_tool_call_end(self, part: BuiltinToolCallPart) -> AsyncIterator[EventT]:  """Handle the end of a `BuiltinToolCallPart`.  Args:  part: The builtin tool call part.  """ return # pragma: no cover yield # Make this an async generator 

handle_builtin_tool_return async

handle_builtin_tool_return( part: BuiltinToolReturnPart, ) -> AsyncIterator[EventT] 

Handle a BuiltinToolReturnPart.

Parameters:

Name Type Description Default
part BuiltinToolReturnPart

The builtin tool return part.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
539 540 541 542 543 544 545 546
async def handle_builtin_tool_return(self, part: BuiltinToolReturnPart) -> AsyncIterator[EventT]:  """Handle a `BuiltinToolReturnPart`.  Args:  part: The builtin tool return part.  """ return # pragma: no cover yield # Make this an async generator 

handle_file async

handle_file(part: FilePart) -> AsyncIterator[EventT] 

Handle a FilePart.

Parameters:

Name Type Description Default
part FilePart

The file part.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
548 549 550 551 552 553 554 555
async def handle_file(self, part: FilePart) -> AsyncIterator[EventT]:  """Handle a `FilePart`.  Args:  part: The file part.  """ return # pragma: no cover yield # Make this an async generator 

handle_final_result async

handle_final_result( event: FinalResultEvent, ) -> AsyncIterator[EventT] 

Handle a FinalResultEvent.

Parameters:

Name Type Description Default
event FinalResultEvent

The final result event.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
557 558 559 560 561 562 563 564
async def handle_final_result(self, event: FinalResultEvent) -> AsyncIterator[EventT]:  """Handle a `FinalResultEvent`.  Args:  event: The final result event.  """ return yield # Make this an async generator 

handle_function_tool_call async

handle_function_tool_call( event: FunctionToolCallEvent, ) -> AsyncIterator[EventT] 

Handle a FunctionToolCallEvent.

Parameters:

Name Type Description Default
event FunctionToolCallEvent

The function tool call event.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
566 567 568 569 570 571 572 573
async def handle_function_tool_call(self, event: FunctionToolCallEvent) -> AsyncIterator[EventT]:  """Handle a `FunctionToolCallEvent`.  Args:  event: The function tool call event.  """ return yield # Make this an async generator 

handle_function_tool_result async

handle_function_tool_result( event: FunctionToolResultEvent, ) -> AsyncIterator[EventT] 

Handle a FunctionToolResultEvent.

Parameters:

Name Type Description Default
event FunctionToolResultEvent

The function tool result event.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
575 576 577 578 579 580 581 582
async def handle_function_tool_result(self, event: FunctionToolResultEvent) -> AsyncIterator[EventT]:  """Handle a `FunctionToolResultEvent`.  Args:  event: The function tool result event.  """ return # pragma: no cover yield # Make this an async generator 

handle_run_result async

handle_run_result( event: AgentRunResultEvent, ) -> AsyncIterator[EventT] 

Handle an AgentRunResultEvent.

Parameters:

Name Type Description Default
event AgentRunResultEvent

The agent run result event.

required
Source code in pydantic_ai_slim/pydantic_ai/ui/_event_stream.py
584 585 586 587 588 589 590 591
async def handle_run_result(self, event: AgentRunResultEvent) -> AsyncIterator[EventT]:  """Handle an `AgentRunResultEvent`.  Args:  event: The agent run result event.  """ return yield # Make this an async generator 

MessagesBuilder dataclass

Helper class to build Pydantic AI messages from request/response parts.

Source code in pydantic_ai_slim/pydantic_ai/ui/_messages_builder.py
 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
@dataclass class MessagesBuilder:  """Helper class to build Pydantic AI messages from request/response parts.""" messages: list[ModelMessage] = field(default_factory=list) def add(self, part: ModelRequestPart | ModelResponsePart) -> None:  """Add a new part, creating a new request or response message if necessary.""" last_message = self.messages[-1] if self.messages else None if isinstance(part, get_union_args(ModelRequestPart)): part = cast(ModelRequestPart, part) if isinstance(last_message, ModelRequest): last_message.parts = [*last_message.parts, part] else: self.messages.append(ModelRequest(parts=[part])) else: part = cast(ModelResponsePart, part) if isinstance(last_message, ModelResponse): last_message.parts = [*last_message.parts, part] else: self.messages.append(ModelResponse(parts=[part])) 

add

add(part: ModelRequestPart | ModelResponsePart) -> None 

Add a new part, creating a new request or response message if necessary.

Source code in pydantic_ai_slim/pydantic_ai/ui/_messages_builder.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
def add(self, part: ModelRequestPart | ModelResponsePart) -> None:  """Add a new part, creating a new request or response message if necessary.""" last_message = self.messages[-1] if self.messages else None if isinstance(part, get_union_args(ModelRequestPart)): part = cast(ModelRequestPart, part) if isinstance(last_message, ModelRequest): last_message.parts = [*last_message.parts, part] else: self.messages.append(ModelRequest(parts=[part])) else: part = cast(ModelResponsePart, part) if isinstance(last_message, ModelResponse): last_message.parts = [*last_message.parts, part] else: self.messages.append(ModelResponse(parts=[part]))