Skip to content

pydantic_graph.beta.graph_builder

Graph builder for constructing executable graph definitions.

This module provides the GraphBuilder class and related utilities for constructing typed, executable graph definitions with steps, joins, decisions, and edge routing.

GraphBuilder dataclass

Bases: Generic[StateT, DepsT, GraphInputT, GraphOutputT]

A builder for constructing executable graph definitions.

GraphBuilder provides a fluent interface for defining nodes, edges, and routing in a graph workflow. It supports typed state, dependencies, and input/output validation.

Type Parameters

StateT: The type of the graph state DepsT: The type of the dependencies GraphInputT: The type of the graph input data GraphOutputT: The type of the graph output data

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
@dataclass(init=False) class GraphBuilder(Generic[StateT, DepsT, GraphInputT, GraphOutputT]):  """A builder for constructing executable graph definitions.  GraphBuilder provides a fluent interface for defining nodes, edges, and  routing in a graph workflow. It supports typed state, dependencies, and  input/output validation.  Type Parameters:  StateT: The type of the graph state  DepsT: The type of the dependencies  GraphInputT: The type of the graph input data  GraphOutputT: The type of the graph output data  """ name: str | None  """Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.""" state_type: TypeOrTypeExpression[StateT]  """The type of the graph state.""" deps_type: TypeOrTypeExpression[DepsT]  """The type of the dependencies.""" input_type: TypeOrTypeExpression[GraphInputT]  """The type of the graph input data.""" output_type: TypeOrTypeExpression[GraphOutputT]  """The type of the graph output data.""" auto_instrument: bool  """Whether to automatically create instrumentation spans.""" _nodes: dict[NodeID, AnyNode]  """Internal storage for nodes in the graph.""" _edges_by_source: dict[NodeID, list[Path]]  """Internal storage for edges by source node.""" _decision_index: int  """Counter for generating unique decision node IDs.""" Source = TypeAliasType('Source', SourceNode[StateT, DepsT, OutputT], type_params=(OutputT,)) Destination = TypeAliasType('Destination', DestinationNode[StateT, DepsT, InputT], type_params=(InputT,)) def __init__( self, *, name: str | None = None, state_type: TypeOrTypeExpression[StateT] = NoneType, deps_type: TypeOrTypeExpression[DepsT] = NoneType, input_type: TypeOrTypeExpression[GraphInputT] = NoneType, output_type: TypeOrTypeExpression[GraphOutputT] = NoneType, auto_instrument: bool = True, ):  """Initialize a graph builder.  Args:  name: Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.  state_type: The type of the graph state  deps_type: The type of the dependencies  input_type: The type of the graph input data  output_type: The type of the graph output data  auto_instrument: Whether to automatically create instrumentation spans  """ self.name = name self.state_type = state_type self.deps_type = deps_type self.input_type = input_type self.output_type = output_type self.auto_instrument = auto_instrument self._nodes = {} self._edges_by_source = defaultdict(list) self._decision_index = 1 self._start_node = StartNode[GraphInputT]() self._end_node = EndNode[GraphOutputT]() # Node building @property def start_node(self) -> StartNode[GraphInputT]:  """Get the start node for the graph.  Returns:  The start node that receives the initial graph input  """ return self._start_node @property def end_node(self) -> EndNode[GraphOutputT]:  """Get the end node for the graph.  Returns:  The end node that produces the final graph output  """ return self._end_node @overload def step( self, *, node_id: str | None = None, label: str | None = None, ) -> Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]]: ... @overload def step( self, call: StepFunction[StateT, DepsT, InputT, OutputT], *, node_id: str | None = None, label: str | None = None, ) -> Step[StateT, DepsT, InputT, OutputT]: ... def step( self, call: StepFunction[StateT, DepsT, InputT, OutputT] | None = None, *, node_id: str | None = None, label: str | None = None, ) -> ( Step[StateT, DepsT, InputT, OutputT] | Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]] ):  """Create a step from a step function.  This method can be used as a decorator or called directly to create  a step node from an async function.  Args:  call: The step function to wrap  node_id: Optional ID for the node  label: Optional human-readable label  Returns:  Either a Step instance or a decorator function  """ if call is None: def decorator( func: StepFunction[StateT, DepsT, InputT, OutputT], ) -> Step[StateT, DepsT, InputT, OutputT]: return self.step(call=func, node_id=node_id, label=label) return decorator node_id = node_id or get_callable_name(call) step = Step[StateT, DepsT, InputT, OutputT](id=NodeID(node_id), call=call, label=label) return step @overload def stream( self, *, node_id: str | None = None, label: str | None = None, ) -> Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] ]: ... @overload def stream( self, call: StreamFunction[StateT, DepsT, InputT, OutputT], *, node_id: str | None = None, label: str | None = None, ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]: ... @overload def stream( self, call: StreamFunction[StateT, DepsT, InputT, OutputT] | None = None, *, node_id: str | None = None, label: str | None = None, ) -> ( Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]], ] ): ... def stream( self, call: StreamFunction[StateT, DepsT, InputT, OutputT] | None = None, *, node_id: str | None = None, label: str | None = None, ) -> ( Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]], ] ):  """Create a step from an async iterator (which functions like a "stream").  This method can be used as a decorator or called directly to create  a step node from an async function.  Args:  call: The step function to wrap  node_id: Optional ID for the node  label: Optional human-readable label  Returns:  Either a Step instance or a decorator function  """ if call is None: def decorator( func: StreamFunction[StateT, DepsT, InputT, OutputT], ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]: return self.stream(call=func, node_id=node_id, label=label) return decorator # We need to wrap the call so that we can call `await` even though the result is an async iterator async def wrapper(ctx: StepContext[StateT, DepsT, InputT]): return call(ctx) node_id = node_id or get_callable_name(call) return self.step(call=wrapper, node_id=node_id, label=label) @overload def join( self, reducer: ReducerFunction[StateT, DepsT, InputT, OutputT], *, initial: OutputT, node_id: str | None = None, parent_fork_id: str | None = None, preferred_parent_fork: Literal['farthest', 'closest'] = 'farthest', ) -> Join[StateT, DepsT, InputT, OutputT]: ... @overload def join( self, reducer: ReducerFunction[StateT, DepsT, InputT, OutputT], *, initial_factory: Callable[[], OutputT], node_id: str | None = None, parent_fork_id: str | None = None, preferred_parent_fork: Literal['farthest', 'closest'] = 'farthest', ) -> Join[StateT, DepsT, InputT, OutputT]: ... def join( self, reducer: ReducerFunction[StateT, DepsT, InputT, OutputT], *, initial: OutputT | Unset = UNSET, initial_factory: Callable[[], OutputT] | Unset = UNSET, node_id: str | None = None, parent_fork_id: str | None = None, preferred_parent_fork: Literal['farthest', 'closest'] = 'farthest', ) -> Join[StateT, DepsT, InputT, OutputT]: if initial_factory is UNSET: initial_factory = lambda: initial # pyright: ignore[reportAssignmentType] # noqa: E731 return Join[StateT, DepsT, InputT, OutputT]( id=JoinID(NodeID(node_id or generate_placeholder_node_id(get_callable_name(reducer)))), reducer=reducer, initial_factory=cast(Callable[[], OutputT], initial_factory), parent_fork_id=ForkID(parent_fork_id) if parent_fork_id is not None else None, preferred_parent_fork=preferred_parent_fork, ) # Edge building def add(self, *edges: EdgePath[StateT, DepsT]) -> None: # noqa: C901  """Add one or more edge paths to the graph.  This method processes edge paths and automatically creates any necessary  fork nodes for broadcasts and maps.  Args:  *edges: The edge paths to add to the graph  """ def _handle_path(p: Path):  """Process a path and create necessary fork nodes.  Args:  p: The path to process  """ for item in p.items: if isinstance(item, BroadcastMarker): new_node = Fork[Any, Any](id=item.fork_id, is_map=False, downstream_join_id=None) self._insert_node(new_node) for path in item.paths: _handle_path(Path(items=[*path.items])) elif isinstance(item, MapMarker): new_node = Fork[Any, Any](id=item.fork_id, is_map=True, downstream_join_id=item.downstream_join_id) self._insert_node(new_node) elif isinstance(item, DestinationMarker): pass def _handle_destination_node(d: AnyDestinationNode): if id(d) in destination_ids: return # prevent infinite recursion if there is a cycle of decisions destination_ids.add(id(d)) destinations.append(d) self._insert_node(d) if isinstance(d, Decision): for branch in d.branches: _handle_path(branch.path) for d2 in branch.destinations: _handle_destination_node(d2) destination_ids = set[int]() destinations: list[AnyDestinationNode] = [] for edge in edges: for source_node in edge.sources: self._insert_node(source_node) self._edges_by_source[source_node.id].append(edge.path) for destination_node in edge.destinations: _handle_destination_node(destination_node) _handle_path(edge.path) # Automatically create edges from step function return hints including `BaseNode`s for destination in destinations: if not isinstance(destination, Step) or isinstance(destination, NodeStep): continue parent_namespace = _utils.get_parent_namespace(inspect.currentframe()) type_hints = get_type_hints(destination.call, localns=parent_namespace, include_extras=True) try: return_hint = type_hints['return'] except KeyError: pass else: edge = self._edge_from_return_hint(destination, return_hint) if edge is not None: self.add(edge) def add_edge(self, source: Source[T], destination: Destination[T], *, label: str | None = None) -> None:  """Add a simple edge between two nodes.  Args:  source: The source node  destination: The destination node  label: Optional label for the edge  """ builder = self.edge_from(source) if label is not None: builder = builder.label(label) self.add(builder.to(destination)) def add_mapping_edge( self, source: Source[Iterable[T]], map_to: Destination[T], *, pre_map_label: str | None = None, post_map_label: str | None = None, fork_id: ForkID | None = None, downstream_join_id: JoinID | None = None, ) -> None:  """Add an edge that maps iterable data across parallel paths.  Args:  source: The source node that produces iterable data  map_to: The destination node that receives individual items  pre_map_label: Optional label before the map operation  post_map_label: Optional label after the map operation  fork_id: Optional ID for the fork node produced for this map operation  downstream_join_id: Optional ID of a join node that will always be downstream of this map.  Specifying this ensures correct handling if you try to map an empty iterable.  """ builder = self.edge_from(source) if pre_map_label is not None: builder = builder.label(pre_map_label) builder = builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id) if post_map_label is not None: builder = builder.label(post_map_label) self.add(builder.to(map_to)) # TODO(DavidM): Support adding subgraphs; I think this behaves like a step with the same inputs/outputs but gets rendered as a subgraph in mermaid def edge_from(self, *sources: Source[SourceOutputT]) -> EdgePathBuilder[StateT, DepsT, SourceOutputT]:  """Create an edge path builder starting from the given source nodes.  Args:  *sources: The source nodes to start the edge path from  Returns:  An EdgePathBuilder for constructing the complete edge path  """ return EdgePathBuilder[StateT, DepsT, SourceOutputT]( sources=sources, path_builder=PathBuilder(working_items=[]) ) def decision(self, *, note: str | None = None, node_id: str | None = None) -> Decision[StateT, DepsT, Never]:  """Create a new decision node.  Args:  note: Optional note to describe the decision logic  node_id: Optional ID for the node produced for this decision logic  Returns:  A new Decision node with no branches  """ return Decision(id=NodeID(node_id or generate_placeholder_node_id('decision')), branches=[], note=note) def match( self, source: TypeOrTypeExpression[SourceT], *, matches: Callable[[Any], bool] | None = None, ) -> DecisionBranchBuilder[StateT, DepsT, SourceT, SourceT, Never]:  """Create a decision branch matcher.  Args:  source: The type or type expression to match against  matches: Optional custom matching function  Returns:  A DecisionBranchBuilder for constructing the branch  """ # Note, the following node_id really is just a placeholder and shouldn't end up in the final graph # This is why we don't expose a way for end users to override the value used here. node_id = NodeID(generate_placeholder_node_id('match_decision')) decision = Decision[StateT, DepsT, Never](id=node_id, branches=[], note=None) new_path_builder = PathBuilder[StateT, DepsT, SourceT](working_items=[]) return DecisionBranchBuilder(decision=decision, source=source, matches=matches, path_builder=new_path_builder) def match_node( self, source: type[SourceNodeT], *, matches: Callable[[Any], bool] | None = None, ) -> DecisionBranch[SourceNodeT]:  """Create a decision branch for BaseNode subclasses.  This is similar to match() but specifically designed for matching  against BaseNode types from the v1 system.  Args:  source: The BaseNode subclass to match against  matches: Optional custom matching function  Returns:  A DecisionBranch for the BaseNode type  """ node = NodeStep(source) path = Path(items=[DestinationMarker(node.id)]) return DecisionBranch(source=source, matches=matches, path=path, destinations=[node]) def node( self, node_type: type[BaseNode[StateT, DepsT, GraphOutputT]], ) -> EdgePath[StateT, DepsT]:  """Create an edge path from a BaseNode class.  This method integrates v1-style BaseNode classes into the v2 graph  system by analyzing their type hints and creating appropriate edges.  Args:  node_type: The BaseNode subclass to integrate  Returns:  An EdgePath representing the node and its connections  Raises:  GraphSetupError: If the node type is missing required type hints  """ parent_namespace = _utils.get_parent_namespace(inspect.currentframe()) type_hints = get_type_hints(node_type.run, localns=parent_namespace, include_extras=True) try: return_hint = type_hints['return'] except KeyError as e: # pragma: no cover raise exceptions.GraphSetupError( f'Node {node_type} is missing a return type hint on its `run` method' ) from e node = NodeStep(node_type) edge = self._edge_from_return_hint(node, return_hint) if not edge: # pragma: no cover raise exceptions.GraphSetupError(f'Node {node_type} is missing a return type hint on its `run` method') return edge # Helpers def _insert_node(self, node: AnyNode) -> None:  """Insert a node into the graph, checking for ID conflicts.  Args:  node: The node to insert  Raises:  ValueError: If a different node with the same ID already exists  """ existing = self._nodes.get(node.id) if existing is None: self._nodes[node.id] = node elif isinstance(existing, NodeStep) and isinstance(node, NodeStep) and existing.node_type is node.node_type: pass elif existing is not node: raise GraphBuildingError( f'All nodes must have unique node IDs. {node.id!r} was the ID for {existing} and {node}' ) def _edge_from_return_hint( self, node: SourceNode[StateT, DepsT, Any], return_hint: TypeOrTypeExpression[Any] ) -> EdgePath[StateT, DepsT] | None:  """Create edges from a return type hint.  This method analyzes return type hints from step functions or node methods  to automatically create appropriate edges in the graph.  Args:  node: The source node  return_hint: The return type hint to analyze  Returns:  An EdgePath if edges can be inferred, None otherwise  Raises:  GraphSetupError: If the return type hint is invalid or incomplete  """ destinations: list[AnyDestinationNode] = [] union_args = _utils.get_union_args(return_hint) for return_type in union_args: return_type, annotations = _utils.unpack_annotated(return_type) return_type_origin = get_origin(return_type) or return_type if return_type_origin is End: destinations.append(self.end_node) elif return_type_origin is BaseNode: raise exceptions.GraphSetupError( # pragma: no cover f'Node {node} return type hint includes a plain `BaseNode`. ' 'Edge inference requires each possible returned `BaseNode` subclass to be listed explicitly.' ) elif return_type_origin is StepNode: step = cast( Step[StateT, DepsT, Any, Any] | None, next((a for a in annotations if isinstance(a, Step)), None), # pyright: ignore[reportUnknownArgumentType] ) if step is None: raise exceptions.GraphSetupError( # pragma: no cover f'Node {node} return type hint includes a `StepNode` without a `Step` annotation. ' 'When returning `my_step.as_node()`, use `Annotated[StepNode[StateT, DepsT], my_step]` as the return type hint.' ) destinations.append(step) elif return_type_origin is JoinNode: join = cast( Join[StateT, DepsT, Any, Any] | None, next((a for a in annotations if isinstance(a, Join)), None), # pyright: ignore[reportUnknownArgumentType] ) if join is None: raise exceptions.GraphSetupError( # pragma: no cover f'Node {node} return type hint includes a `JoinNode` without a `Join` annotation. ' 'When returning `my_join.as_node()`, use `Annotated[JoinNode[StateT, DepsT], my_join]` as the return type hint.' ) destinations.append(join) elif inspect.isclass(return_type_origin) and issubclass(return_type_origin, BaseNode): destinations.append(NodeStep(return_type)) if len(destinations) < len(union_args): # Only build edges if all the return types are nodes return None edge = self.edge_from(node) if len(destinations) == 1: return edge.to(destinations[0]) else: decision = self.decision() for destination in destinations: # We don't actually use this decision mechanism, but we need to build the edges for parent-fork finding decision = decision.branch(self.match(NoneType).to(destination)) return edge.to(decision) # Graph building def build(self, validate_graph_structure: bool = True) -> Graph[StateT, DepsT, GraphInputT, GraphOutputT]:  """Build the final executable graph from the accumulated nodes and edges.  This method performs validation, normalization, and analysis of the graph  structure to create a complete, executable graph instance.  Args:  validate_graph_structure: whether to perform validation of the graph structure  See the docstring of _validate_graph_structure below for more details.  Returns:  A complete Graph instance ready for execution  Raises:  ValueError: If the graph structure is invalid (e.g., join without parent fork)  """ nodes = self._nodes edges_by_source = self._edges_by_source nodes, edges_by_source = _replace_placeholder_node_ids(nodes, edges_by_source) nodes, edges_by_source = _flatten_paths(nodes, edges_by_source) nodes, edges_by_source = _normalize_forks(nodes, edges_by_source) if validate_graph_structure: _validate_graph_structure(nodes, edges_by_source) parent_forks = _collect_dominating_forks(nodes, edges_by_source) intermediate_join_nodes = _compute_intermediate_join_nodes(nodes, parent_forks) return Graph[StateT, DepsT, GraphInputT, GraphOutputT]( name=self.name, state_type=unpack_type_expression(self.state_type), deps_type=unpack_type_expression(self.deps_type), input_type=unpack_type_expression(self.input_type), output_type=unpack_type_expression(self.output_type), nodes=nodes, edges_by_source=edges_by_source, parent_forks=parent_forks, intermediate_join_nodes=intermediate_join_nodes, auto_instrument=self.auto_instrument, ) 

__init__

__init__( *, name: str | None = None, state_type: TypeOrTypeExpression[StateT] = NoneType, deps_type: TypeOrTypeExpression[DepsT] = NoneType, input_type: TypeOrTypeExpression[ GraphInputT ] = NoneType, output_type: TypeOrTypeExpression[ GraphOutputT ] = NoneType, auto_instrument: bool = True ) 

Initialize a graph builder.

Parameters:

Name Type Description Default
name str | None

Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.

None
state_type TypeOrTypeExpression[StateT]

The type of the graph state

NoneType
deps_type TypeOrTypeExpression[DepsT]

The type of the dependencies

NoneType
input_type TypeOrTypeExpression[GraphInputT]

The type of the graph input data

NoneType
output_type TypeOrTypeExpression[GraphOutputT]

The type of the graph output data

NoneType
auto_instrument bool

Whether to automatically create instrumentation spans

True
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
def __init__( self, *, name: str | None = None, state_type: TypeOrTypeExpression[StateT] = NoneType, deps_type: TypeOrTypeExpression[DepsT] = NoneType, input_type: TypeOrTypeExpression[GraphInputT] = NoneType, output_type: TypeOrTypeExpression[GraphOutputT] = NoneType, auto_instrument: bool = True, ):  """Initialize a graph builder.  Args:  name: Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.  state_type: The type of the graph state  deps_type: The type of the dependencies  input_type: The type of the graph input data  output_type: The type of the graph output data  auto_instrument: Whether to automatically create instrumentation spans  """ self.name = name self.state_type = state_type self.deps_type = deps_type self.input_type = input_type self.output_type = output_type self.auto_instrument = auto_instrument self._nodes = {} self._edges_by_source = defaultdict(list) self._decision_index = 1 self._start_node = StartNode[GraphInputT]() self._end_node = EndNode[GraphOutputT]() 

name instance-attribute

name: str | None = name 

Optional name for the graph, if not provided the name will be inferred from the calling frame on the first call to a graph method.

state_type instance-attribute

state_type: TypeOrTypeExpression[StateT] = state_type 

The type of the graph state.

deps_type instance-attribute

deps_type: TypeOrTypeExpression[DepsT] = deps_type 

The type of the dependencies.

input_type instance-attribute

input_type: TypeOrTypeExpression[GraphInputT] = input_type 

The type of the graph input data.

output_type instance-attribute

output_type: TypeOrTypeExpression[GraphOutputT] = ( output_type ) 

The type of the graph output data.

auto_instrument instance-attribute

auto_instrument: bool = auto_instrument 

Whether to automatically create instrumentation spans.

start_node property

start_node: StartNode[GraphInputT] 

Get the start node for the graph.

Returns:

Type Description
StartNode[GraphInputT]

The start node that receives the initial graph input

end_node property

end_node: EndNode[GraphOutputT] 

Get the end node for the graph.

Returns:

Type Description
EndNode[GraphOutputT]

The end node that produces the final graph output

step

step( *, node_id: str | None = None, label: str | None = None ) -> Callable[ [StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT], ] 
step( call: StepFunction[StateT, DepsT, InputT, OutputT], *, node_id: str | None = None, label: str | None = None ) -> Step[StateT, DepsT, InputT, OutputT] 
step( call: ( StepFunction[StateT, DepsT, InputT, OutputT] | None ) = None, *, node_id: str | None = None, label: str | None = None ) -> ( Step[StateT, DepsT, InputT, OutputT] | Callable[ [StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT], ] ) 

Create a step from a step function.

This method can be used as a decorator or called directly to create a step node from an async function.

Parameters:

Name Type Description Default
call StepFunction[StateT, DepsT, InputT, OutputT] | None

The step function to wrap

None
node_id str | None

Optional ID for the node

None
label str | None

Optional human-readable label

None

Returns:

Type Description
Step[StateT, DepsT, InputT, OutputT] | Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]]

Either a Step instance or a decorator function

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def step( self, call: StepFunction[StateT, DepsT, InputT, OutputT] | None = None, *, node_id: str | None = None, label: str | None = None, ) -> ( Step[StateT, DepsT, InputT, OutputT] | Callable[[StepFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, OutputT]] ):  """Create a step from a step function.  This method can be used as a decorator or called directly to create  a step node from an async function.  Args:  call: The step function to wrap  node_id: Optional ID for the node  label: Optional human-readable label  Returns:  Either a Step instance or a decorator function  """ if call is None: def decorator( func: StepFunction[StateT, DepsT, InputT, OutputT], ) -> Step[StateT, DepsT, InputT, OutputT]: return self.step(call=func, node_id=node_id, label=label) return decorator node_id = node_id or get_callable_name(call) step = Step[StateT, DepsT, InputT, OutputT](id=NodeID(node_id), call=call, label=label) return step 

stream

stream( *, node_id: str | None = None, label: str | None = None ) -> Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]], ] 
stream( call: StreamFunction[StateT, DepsT, InputT, OutputT], *, node_id: str | None = None, label: str | None = None ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] 
stream( call: ( StreamFunction[StateT, DepsT, InputT, OutputT] | None ) = None, *, node_id: str | None = None, label: str | None = None ) -> ( Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]], ] ) 
stream( call: ( StreamFunction[StateT, DepsT, InputT, OutputT] | None ) = None, *, node_id: str | None = None, label: str | None = None ) -> ( Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]], ] ) 

Create a step from an async iterator (which functions like a "stream").

This method can be used as a decorator or called directly to create a step node from an async function.

Parameters:

Name Type Description Default
call StreamFunction[StateT, DepsT, InputT, OutputT] | None

The step function to wrap

None
node_id str | None

Optional ID for the node

None
label str | None

Optional human-readable label

None

Returns:

Type Description
Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[[StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]]

Either a Step instance or a decorator function

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def stream( self, call: StreamFunction[StateT, DepsT, InputT, OutputT] | None = None, *, node_id: str | None = None, label: str | None = None, ) -> ( Step[StateT, DepsT, InputT, AsyncIterable[OutputT]] | Callable[ [StreamFunction[StateT, DepsT, InputT, OutputT]], Step[StateT, DepsT, InputT, AsyncIterable[OutputT]], ] ):  """Create a step from an async iterator (which functions like a "stream").  This method can be used as a decorator or called directly to create  a step node from an async function.  Args:  call: The step function to wrap  node_id: Optional ID for the node  label: Optional human-readable label  Returns:  Either a Step instance or a decorator function  """ if call is None: def decorator( func: StreamFunction[StateT, DepsT, InputT, OutputT], ) -> Step[StateT, DepsT, InputT, AsyncIterable[OutputT]]: return self.stream(call=func, node_id=node_id, label=label) return decorator # We need to wrap the call so that we can call `await` even though the result is an async iterator async def wrapper(ctx: StepContext[StateT, DepsT, InputT]): return call(ctx) node_id = node_id or get_callable_name(call) return self.step(call=wrapper, node_id=node_id, label=label) 

add

add(*edges: EdgePath[StateT, DepsT]) -> None 

Add one or more edge paths to the graph.

This method processes edge paths and automatically creates any necessary fork nodes for broadcasts and maps.

Parameters:

Name Type Description Default
*edges EdgePath[StateT, DepsT]

The edge paths to add to the graph

()
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
def add(self, *edges: EdgePath[StateT, DepsT]) -> None: # noqa: C901  """Add one or more edge paths to the graph.  This method processes edge paths and automatically creates any necessary  fork nodes for broadcasts and maps.  Args:  *edges: The edge paths to add to the graph  """ def _handle_path(p: Path):  """Process a path and create necessary fork nodes.  Args:  p: The path to process  """ for item in p.items: if isinstance(item, BroadcastMarker): new_node = Fork[Any, Any](id=item.fork_id, is_map=False, downstream_join_id=None) self._insert_node(new_node) for path in item.paths: _handle_path(Path(items=[*path.items])) elif isinstance(item, MapMarker): new_node = Fork[Any, Any](id=item.fork_id, is_map=True, downstream_join_id=item.downstream_join_id) self._insert_node(new_node) elif isinstance(item, DestinationMarker): pass def _handle_destination_node(d: AnyDestinationNode): if id(d) in destination_ids: return # prevent infinite recursion if there is a cycle of decisions destination_ids.add(id(d)) destinations.append(d) self._insert_node(d) if isinstance(d, Decision): for branch in d.branches: _handle_path(branch.path) for d2 in branch.destinations: _handle_destination_node(d2) destination_ids = set[int]() destinations: list[AnyDestinationNode] = [] for edge in edges: for source_node in edge.sources: self._insert_node(source_node) self._edges_by_source[source_node.id].append(edge.path) for destination_node in edge.destinations: _handle_destination_node(destination_node) _handle_path(edge.path) # Automatically create edges from step function return hints including `BaseNode`s for destination in destinations: if not isinstance(destination, Step) or isinstance(destination, NodeStep): continue parent_namespace = _utils.get_parent_namespace(inspect.currentframe()) type_hints = get_type_hints(destination.call, localns=parent_namespace, include_extras=True) try: return_hint = type_hints['return'] except KeyError: pass else: edge = self._edge_from_return_hint(destination, return_hint) if edge is not None: self.add(edge) 

add_edge

add_edge( source: Source[T], destination: Destination[T], *, label: str | None = None ) -> None 

Add a simple edge between two nodes.

Parameters:

Name Type Description Default
source Source[T]

The source node

required
destination Destination[T]

The destination node

required
label str | None

Optional label for the edge

None
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
400 401 402 403 404 405 406 407 408 409 410 411
def add_edge(self, source: Source[T], destination: Destination[T], *, label: str | None = None) -> None:  """Add a simple edge between two nodes.  Args:  source: The source node  destination: The destination node  label: Optional label for the edge  """ builder = self.edge_from(source) if label is not None: builder = builder.label(label) self.add(builder.to(destination)) 

add_mapping_edge

add_mapping_edge( source: Source[Iterable[T]], map_to: Destination[T], *, pre_map_label: str | None = None, post_map_label: str | None = None, fork_id: ForkID | None = None, downstream_join_id: JoinID | None = None ) -> None 

Add an edge that maps iterable data across parallel paths.

Parameters:

Name Type Description Default
source Source[Iterable[T]]

The source node that produces iterable data

required
map_to Destination[T]

The destination node that receives individual items

required
pre_map_label str | None

Optional label before the map operation

None
post_map_label str | None

Optional label after the map operation

None
fork_id ForkID | None

Optional ID for the fork node produced for this map operation

None
downstream_join_id JoinID | None

Optional ID of a join node that will always be downstream of this map. Specifying this ensures correct handling if you try to map an empty iterable.

None
Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
def add_mapping_edge( self, source: Source[Iterable[T]], map_to: Destination[T], *, pre_map_label: str | None = None, post_map_label: str | None = None, fork_id: ForkID | None = None, downstream_join_id: JoinID | None = None, ) -> None:  """Add an edge that maps iterable data across parallel paths.  Args:  source: The source node that produces iterable data  map_to: The destination node that receives individual items  pre_map_label: Optional label before the map operation  post_map_label: Optional label after the map operation  fork_id: Optional ID for the fork node produced for this map operation  downstream_join_id: Optional ID of a join node that will always be downstream of this map.  Specifying this ensures correct handling if you try to map an empty iterable.  """ builder = self.edge_from(source) if pre_map_label is not None: builder = builder.label(pre_map_label) builder = builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id) if post_map_label is not None: builder = builder.label(post_map_label) self.add(builder.to(map_to)) 

edge_from

edge_from( *sources: Source[SourceOutputT], ) -> EdgePathBuilder[StateT, DepsT, SourceOutputT] 

Create an edge path builder starting from the given source nodes.

Parameters:

Name Type Description Default
*sources Source[SourceOutputT]

The source nodes to start the edge path from

()

Returns:

Type Description
EdgePathBuilder[StateT, DepsT, SourceOutputT]

An EdgePathBuilder for constructing the complete edge path

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
444 445 446 447 448 449 450 451 452 453 454 455
def edge_from(self, *sources: Source[SourceOutputT]) -> EdgePathBuilder[StateT, DepsT, SourceOutputT]:  """Create an edge path builder starting from the given source nodes.  Args:  *sources: The source nodes to start the edge path from  Returns:  An EdgePathBuilder for constructing the complete edge path  """ return EdgePathBuilder[StateT, DepsT, SourceOutputT]( sources=sources, path_builder=PathBuilder(working_items=[]) ) 

decision

decision( *, note: str | None = None, node_id: str | None = None ) -> Decision[StateT, DepsT, Never] 

Create a new decision node.

Parameters:

Name Type Description Default
note str | None

Optional note to describe the decision logic

None
node_id str | None

Optional ID for the node produced for this decision logic

None

Returns:

Type Description
Decision[StateT, DepsT, Never]

A new Decision node with no branches

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
457 458 459 460 461 462 463 464 465 466 467
def decision(self, *, note: str | None = None, node_id: str | None = None) -> Decision[StateT, DepsT, Never]:  """Create a new decision node.  Args:  note: Optional note to describe the decision logic  node_id: Optional ID for the node produced for this decision logic  Returns:  A new Decision node with no branches  """ return Decision(id=NodeID(node_id or generate_placeholder_node_id('decision')), branches=[], note=note) 

match

match( source: TypeOrTypeExpression[SourceT], *, matches: Callable[[Any], bool] | None = None ) -> DecisionBranchBuilder[ StateT, DepsT, SourceT, SourceT, Never ] 

Create a decision branch matcher.

Parameters:

Name Type Description Default
source TypeOrTypeExpression[SourceT]

The type or type expression to match against

required
matches Callable[[Any], bool] | None

Optional custom matching function

None

Returns:

Type Description
DecisionBranchBuilder[StateT, DepsT, SourceT, SourceT, Never]

A DecisionBranchBuilder for constructing the branch

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
def match( self, source: TypeOrTypeExpression[SourceT], *, matches: Callable[[Any], bool] | None = None, ) -> DecisionBranchBuilder[StateT, DepsT, SourceT, SourceT, Never]:  """Create a decision branch matcher.  Args:  source: The type or type expression to match against  matches: Optional custom matching function  Returns:  A DecisionBranchBuilder for constructing the branch  """ # Note, the following node_id really is just a placeholder and shouldn't end up in the final graph # This is why we don't expose a way for end users to override the value used here. node_id = NodeID(generate_placeholder_node_id('match_decision')) decision = Decision[StateT, DepsT, Never](id=node_id, branches=[], note=None) new_path_builder = PathBuilder[StateT, DepsT, SourceT](working_items=[]) return DecisionBranchBuilder(decision=decision, source=source, matches=matches, path_builder=new_path_builder) 

match_node

match_node( source: type[SourceNodeT], *, matches: Callable[[Any], bool] | None = None ) -> DecisionBranch[SourceNodeT] 

Create a decision branch for BaseNode subclasses.

This is similar to match() but specifically designed for matching against BaseNode types from the v1 system.

Parameters:

Name Type Description Default
source type[SourceNodeT]

The BaseNode subclass to match against

required
matches Callable[[Any], bool] | None

Optional custom matching function

None

Returns:

Type Description
DecisionBranch[SourceNodeT]

A DecisionBranch for the BaseNode type

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
def match_node( self, source: type[SourceNodeT], *, matches: Callable[[Any], bool] | None = None, ) -> DecisionBranch[SourceNodeT]:  """Create a decision branch for BaseNode subclasses.  This is similar to match() but specifically designed for matching  against BaseNode types from the v1 system.  Args:  source: The BaseNode subclass to match against  matches: Optional custom matching function  Returns:  A DecisionBranch for the BaseNode type  """ node = NodeStep(source) path = Path(items=[DestinationMarker(node.id)]) return DecisionBranch(source=source, matches=matches, path=path, destinations=[node]) 

node

node( node_type: type[BaseNode[StateT, DepsT, GraphOutputT]], ) -> EdgePath[StateT, DepsT] 

Create an edge path from a BaseNode class.

This method integrates v1-style BaseNode classes into the v2 graph system by analyzing their type hints and creating appropriate edges.

Parameters:

Name Type Description Default
node_type type[BaseNode[StateT, DepsT, GraphOutputT]]

The BaseNode subclass to integrate

required

Returns:

Type Description
EdgePath[StateT, DepsT]

An EdgePath representing the node and its connections

Raises:

Type Description
GraphSetupError

If the node type is missing required type hints

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
def node( self, node_type: type[BaseNode[StateT, DepsT, GraphOutputT]], ) -> EdgePath[StateT, DepsT]:  """Create an edge path from a BaseNode class.  This method integrates v1-style BaseNode classes into the v2 graph  system by analyzing their type hints and creating appropriate edges.  Args:  node_type: The BaseNode subclass to integrate  Returns:  An EdgePath representing the node and its connections  Raises:  GraphSetupError: If the node type is missing required type hints  """ parent_namespace = _utils.get_parent_namespace(inspect.currentframe()) type_hints = get_type_hints(node_type.run, localns=parent_namespace, include_extras=True) try: return_hint = type_hints['return'] except KeyError as e: # pragma: no cover raise exceptions.GraphSetupError( f'Node {node_type} is missing a return type hint on its `run` method' ) from e node = NodeStep(node_type) edge = self._edge_from_return_hint(node, return_hint) if not edge: # pragma: no cover raise exceptions.GraphSetupError(f'Node {node_type} is missing a return type hint on its `run` method') return edge 

build

build( validate_graph_structure: bool = True, ) -> Graph[StateT, DepsT, GraphInputT, GraphOutputT] 

Build the final executable graph from the accumulated nodes and edges.

This method performs validation, normalization, and analysis of the graph structure to create a complete, executable graph instance.

Parameters:

Name Type Description Default
validate_graph_structure bool

whether to perform validation of the graph structure See the docstring of _validate_graph_structure below for more details.

True

Returns:

Type Description
Graph[StateT, DepsT, GraphInputT, GraphOutputT]

A complete Graph instance ready for execution

Raises:

Type Description
ValueError

If the graph structure is invalid (e.g., join without parent fork)

Source code in pydantic_graph/pydantic_graph/beta/graph_builder.py
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
def build(self, validate_graph_structure: bool = True) -> Graph[StateT, DepsT, GraphInputT, GraphOutputT]:  """Build the final executable graph from the accumulated nodes and edges.  This method performs validation, normalization, and analysis of the graph  structure to create a complete, executable graph instance.  Args:  validate_graph_structure: whether to perform validation of the graph structure  See the docstring of _validate_graph_structure below for more details.  Returns:  A complete Graph instance ready for execution  Raises:  ValueError: If the graph structure is invalid (e.g., join without parent fork)  """ nodes = self._nodes edges_by_source = self._edges_by_source nodes, edges_by_source = _replace_placeholder_node_ids(nodes, edges_by_source) nodes, edges_by_source = _flatten_paths(nodes, edges_by_source) nodes, edges_by_source = _normalize_forks(nodes, edges_by_source) if validate_graph_structure: _validate_graph_structure(nodes, edges_by_source) parent_forks = _collect_dominating_forks(nodes, edges_by_source) intermediate_join_nodes = _compute_intermediate_join_nodes(nodes, parent_forks) return Graph[StateT, DepsT, GraphInputT, GraphOutputT]( name=self.name, state_type=unpack_type_expression(self.state_type), deps_type=unpack_type_expression(self.deps_type), input_type=unpack_type_expression(self.input_type), output_type=unpack_type_expression(self.output_type), nodes=nodes, edges_by_source=edges_by_source, parent_forks=parent_forks, intermediate_join_nodes=intermediate_join_nodes, auto_instrument=self.auto_instrument, )