Skip to content

pydantic_graph.beta.decision

Decision node implementation for conditional branching in graph execution.

This module provides the Decision node type and related classes for implementing conditional branching logic in parallel control flow graphs. Decision nodes allow the graph to choose different execution paths based on runtime conditions.

StateT module-attribute

StateT = TypeVar('StateT', infer_variance=True) 

Type variable for graph state.

DepsT module-attribute

DepsT = TypeVar('DepsT', infer_variance=True) 

Type variable for graph dependencies.

HandledT module-attribute

HandledT = TypeVar('HandledT', infer_variance=True) 

Type variable used to track types handled by the branches of a Decision.

T module-attribute

T = TypeVar('T', infer_variance=True) 

Generic type variable.

Decision dataclass

Bases: Generic[StateT, DepsT, HandledT]

Decision node for conditional branching in graph execution.

A Decision node evaluates conditions and routes execution to different branches based on the input data type or custom matching logic.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
@dataclass(kw_only=True) class Decision(Generic[StateT, DepsT, HandledT]):  """Decision node for conditional branching in graph execution.  A Decision node evaluates conditions and routes execution to different  branches based on the input data type or custom matching logic.  """ id: NodeID  """Unique identifier for this decision node.""" branches: list[DecisionBranch[Any]]  """List of branches that can be taken from this decision.""" note: str | None  """Optional documentation note for this decision.""" def branch(self, branch: DecisionBranch[T]) -> Decision[StateT, DepsT, HandledT | T]:  """Add a new branch to this decision.  Args:  branch: The branch to add to this decision.  Returns:  A new Decision with the additional branch.  """ return Decision(id=self.id, branches=self.branches + [branch], note=self.note) def _force_handled_contravariant(self, inputs: HandledT) -> Never: # pragma: no cover  """Forces this type to be contravariant in the HandledT type variable.  This is an implementation detail of how we can type-check that all possible input types have  been exhaustively covered.  Args:  inputs: Input data of handled types.  Raises:  RuntimeError: Always, as this method should never be executed.  """ raise RuntimeError('This method should never be called, it is just defined for typing purposes.') 

id instance-attribute

id: NodeID 

Unique identifier for this decision node.

branches instance-attribute

branches: list[DecisionBranch[Any]] 

List of branches that can be taken from this decision.

note instance-attribute

note: str | None 

Optional documentation note for this decision.

branch

branch( branch: DecisionBranch[T], ) -> Decision[StateT, DepsT, HandledT | T] 

Add a new branch to this decision.

Parameters:

Name Type Description Default
branch DecisionBranch[T]

The branch to add to this decision.

required

Returns:

Type Description
Decision[StateT, DepsT, HandledT | T]

A new Decision with the additional branch.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
57 58 59 60 61 62 63 64 65 66
def branch(self, branch: DecisionBranch[T]) -> Decision[StateT, DepsT, HandledT | T]:  """Add a new branch to this decision.  Args:  branch: The branch to add to this decision.  Returns:  A new Decision with the additional branch.  """ return Decision(id=self.id, branches=self.branches + [branch], note=self.note) 

SourceT module-attribute

SourceT = TypeVar('SourceT', infer_variance=True) 

Type variable for source data for a DecisionBranch.

DecisionBranch dataclass

Bases: Generic[SourceT]

Represents a single branch within a decision node.

Each branch defines the conditions under which it should be taken and the path to follow when those conditions are met.

Note: with the current design, it is actually critical that this class is invariant in SourceT for the sake of type-checking that inputs to a Decision are actually handled. See the # type: ignore comment in tests.graph.beta.test_graph_edge_cases.test_decision_no_matching_branch for an example of how this works.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
 87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
@dataclass class DecisionBranch(Generic[SourceT]):  """Represents a single branch within a decision node.  Each branch defines the conditions under which it should be taken  and the path to follow when those conditions are met.  Note: with the current design, it is actually _critical_ that this class is invariant in SourceT for the sake  of type-checking that inputs to a Decision are actually handled. See the `# type: ignore` comment in  `tests.graph.beta.test_graph_edge_cases.test_decision_no_matching_branch` for an example of how this works.  """ source: TypeOrTypeExpression[SourceT]  """The expected type of data for this branch.  This is necessary for exhaustiveness-checking when handling the inputs to a decision node.""" matches: Callable[[Any], bool] | None  """An optional predicate function used to determine whether input data matches this branch.  If `None`, default logic is used which attempts to check the value for type-compatibility with the `source` type:  * If `source` is `Any` or `object`, the branch will always match  * If `source` is a `Literal` type, this branch will match if the value is one of the parametrizing literal values  * If `source` is any other type, the value will be checked for matching using `isinstance`  Inputs are tested against each branch of a decision node in order, and the path of the first matching branch is  used to handle the input value.  """ path: Path  """The execution path to follow when an input value matches this branch of a decision node.  This can include transforming, mapping, and broadcasting the output before sending to the next node or nodes.  The path can also include position-aware labels which are used when generating mermaid diagrams.""" destinations: list[AnyDestinationNode]  """The destination nodes that can be referenced by DestinationMarker in the path.""" 

source instance-attribute

source: TypeOrTypeExpression[SourceT] 

The expected type of data for this branch.

This is necessary for exhaustiveness-checking when handling the inputs to a decision node.

matches instance-attribute

matches: Callable[[Any], bool] | None 

An optional predicate function used to determine whether input data matches this branch.

If None, default logic is used which attempts to check the value for type-compatibility with the source type: * If source is Any or object, the branch will always match * If source is a Literal type, this branch will match if the value is one of the parametrizing literal values * If source is any other type, the value will be checked for matching using isinstance

Inputs are tested against each branch of a decision node in order, and the path of the first matching branch is used to handle the input value.

path instance-attribute

path: Path 

The execution path to follow when an input value matches this branch of a decision node.

This can include transforming, mapping, and broadcasting the output before sending to the next node or nodes.

The path can also include position-aware labels which are used when generating mermaid diagrams.

destinations instance-attribute

destinations: list[AnyDestinationNode] 

The destination nodes that can be referenced by DestinationMarker in the path.

OutputT module-attribute

OutputT = TypeVar('OutputT', infer_variance=True) 

Type variable for the output data of a node.

NewOutputT module-attribute

NewOutputT = TypeVar('NewOutputT', infer_variance=True) 

Type variable for transformed output.

DecisionBranchBuilder dataclass

Bases: Generic[StateT, DepsT, OutputT, SourceT, HandledT]

Builder for constructing decision branches with fluent API.

This builder provides methods to configure branches with destinations, forks, and transformations in a type-safe manner.

Instances of this class should be created using GraphBuilder.match, not created directly.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
@dataclass(init=False) class DecisionBranchBuilder(Generic[StateT, DepsT, OutputT, SourceT, HandledT]):  """Builder for constructing decision branches with fluent API.  This builder provides methods to configure branches with destinations,  forks, and transformations in a type-safe manner.  Instances of this class should be created using [`GraphBuilder.match`][pydantic_graph.beta.graph_builder.GraphBuilder],  not created directly.  """ _decision: Decision[StateT, DepsT, HandledT]  """The parent decision node.""" _source: TypeOrTypeExpression[SourceT]  """The expected source type for this branch.""" _matches: Callable[[Any], bool] | None  """Optional matching predicate.""" _path_builder: PathBuilder[StateT, DepsT, OutputT]  """Builder for the execution path.""" def __init__( self, *, decision: Decision[StateT, DepsT, HandledT], source: TypeOrTypeExpression[SourceT], matches: Callable[[Any], bool] | None, path_builder: PathBuilder[StateT, DepsT, OutputT], ): # This manually-defined initializer is necessary due to https://github.com/python/mypy/issues/17623. self._decision = decision self._source = source self._matches = matches self._path_builder = path_builder def to( self, destination: DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]], /, *extra_destinations: DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]], fork_id: str | None = None, ) -> DecisionBranch[SourceT]:  """Set the destination(s) for this branch.  Args:  destination: The primary destination node.  *extra_destinations: Additional destination nodes.  fork_id: Optional node ID to use for the resulting broadcast fork if multiple destinations are provided.  Returns:  A completed DecisionBranch with the specified destinations.  """ destination = get_origin(destination) or destination extra_destinations = tuple(get_origin(d) or d for d in extra_destinations) destinations = [(NodeStep(d) if inspect.isclass(d) else d) for d in (destination, *extra_destinations)] return DecisionBranch( source=self._source, matches=self._matches, path=self._path_builder.to(*destinations, fork_id=fork_id), destinations=destinations, ) def broadcast( self, get_forks: Callable[[Self], Sequence[DecisionBranch[SourceT]]], /, *, fork_id: str | None = None ) -> DecisionBranch[SourceT]:  """Broadcast this decision branch into multiple destinations.  Args:  get_forks: The callback that will return a sequence of decision branches to broadcast to.  fork_id: Optional node ID to use for the resulting broadcast fork.  Returns:  A completed DecisionBranch with the specified destinations.  """ fork_decision_branches = get_forks(self) new_paths = [b.path for b in fork_decision_branches] if not new_paths: raise GraphBuildingError(f'The call to {get_forks} returned no branches, but must return at least one.') path = self._path_builder.broadcast(new_paths, fork_id=fork_id) destinations = [d for fdp in fork_decision_branches for d in fdp.destinations] return DecisionBranch(source=self._source, matches=self._matches, path=path, destinations=destinations) def transform( self, func: TransformFunction[StateT, DepsT, OutputT, NewOutputT], / ) -> DecisionBranchBuilder[StateT, DepsT, NewOutputT, SourceT, HandledT]:  """Apply a transformation to the branch's output.  Args:  func: Transformation function to apply.  Returns:  A new DecisionBranchBuilder where the provided transform is applied prior to generating the final output.  """ return DecisionBranchBuilder( decision=self._decision, source=self._source, matches=self._matches, path_builder=self._path_builder.transform(func), ) def map( self: DecisionBranchBuilder[StateT, DepsT, Iterable[T], SourceT, HandledT] | DecisionBranchBuilder[StateT, DepsT, AsyncIterable[T], SourceT, HandledT], *, fork_id: str | None = None, downstream_join_id: str | None = None, ) -> DecisionBranchBuilder[StateT, DepsT, T, SourceT, HandledT]:  """Spread the branch's output.  To do this, the current output must be iterable, and any subsequent steps in the path being built for this  branch will be applied to each item of the current output in parallel.  Args:  fork_id: Optional ID for the fork, defaults to a generated value  downstream_join_id: Optional ID of a downstream join node which is involved when mapping empty iterables  Returns:  A new DecisionBranchBuilder where mapping is performed prior to generating the final output.  """ return DecisionBranchBuilder( decision=self._decision, source=self._source, matches=self._matches, path_builder=self._path_builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id), ) def label(self, label: str) -> DecisionBranchBuilder[StateT, DepsT, OutputT, SourceT, HandledT]:  """Apply a label to the branch at the current point in the path being built.  These labels are only used in generated mermaid diagrams.  Args:  label: The label to apply.  Returns:  A new DecisionBranchBuilder where the label has been applied at the end of the current path being built.  """ return DecisionBranchBuilder( decision=self._decision, source=self._source, matches=self._matches, path_builder=self._path_builder.label(label), ) 

to

to( destination: ( DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]] ), /, *extra_destinations: DestinationNode[ StateT, DepsT, OutputT ] | type[BaseNode[StateT, DepsT, Any]], fork_id: str | None = None, ) -> DecisionBranch[SourceT] 

Set the destination(s) for this branch.

Parameters:

Name Type Description Default
destination DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]]

The primary destination node.

required
*extra_destinations DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]]

Additional destination nodes.

()
fork_id str | None

Optional node ID to use for the resulting broadcast fork if multiple destinations are provided.

None

Returns:

Type Description
DecisionBranch[SourceT]

A completed DecisionBranch with the specified destinations.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def to( self, destination: DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]], /, *extra_destinations: DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]], fork_id: str | None = None, ) -> DecisionBranch[SourceT]:  """Set the destination(s) for this branch.  Args:  destination: The primary destination node.  *extra_destinations: Additional destination nodes.  fork_id: Optional node ID to use for the resulting broadcast fork if multiple destinations are provided.  Returns:  A completed DecisionBranch with the specified destinations.  """ destination = get_origin(destination) or destination extra_destinations = tuple(get_origin(d) or d for d in extra_destinations) destinations = [(NodeStep(d) if inspect.isclass(d) else d) for d in (destination, *extra_destinations)] return DecisionBranch( source=self._source, matches=self._matches, path=self._path_builder.to(*destinations, fork_id=fork_id), destinations=destinations, ) 

broadcast

broadcast( get_forks: Callable[ [Self], Sequence[DecisionBranch[SourceT]] ], /, *, fork_id: str | None = None, ) -> DecisionBranch[SourceT] 

Broadcast this decision branch into multiple destinations.

Parameters:

Name Type Description Default
get_forks Callable[[Self], Sequence[DecisionBranch[SourceT]]]

The callback that will return a sequence of decision branches to broadcast to.

required
fork_id str | None

Optional node ID to use for the resulting broadcast fork.

None

Returns:

Type Description
DecisionBranch[SourceT]

A completed DecisionBranch with the specified destinations.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
def broadcast( self, get_forks: Callable[[Self], Sequence[DecisionBranch[SourceT]]], /, *, fork_id: str | None = None ) -> DecisionBranch[SourceT]:  """Broadcast this decision branch into multiple destinations.  Args:  get_forks: The callback that will return a sequence of decision branches to broadcast to.  fork_id: Optional node ID to use for the resulting broadcast fork.  Returns:  A completed DecisionBranch with the specified destinations.  """ fork_decision_branches = get_forks(self) new_paths = [b.path for b in fork_decision_branches] if not new_paths: raise GraphBuildingError(f'The call to {get_forks} returned no branches, but must return at least one.') path = self._path_builder.broadcast(new_paths, fork_id=fork_id) destinations = [d for fdp in fork_decision_branches for d in fdp.destinations] return DecisionBranch(source=self._source, matches=self._matches, path=path, destinations=destinations) 

transform

transform( func: TransformFunction[ StateT, DepsT, OutputT, NewOutputT ], ) -> DecisionBranchBuilder[ StateT, DepsT, NewOutputT, SourceT, HandledT ] 

Apply a transformation to the branch's output.

Parameters:

Name Type Description Default
func TransformFunction[StateT, DepsT, OutputT, NewOutputT]

Transformation function to apply.

required

Returns:

Type Description
DecisionBranchBuilder[StateT, DepsT, NewOutputT, SourceT, HandledT]

A new DecisionBranchBuilder where the provided transform is applied prior to generating the final output.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
def transform( self, func: TransformFunction[StateT, DepsT, OutputT, NewOutputT], / ) -> DecisionBranchBuilder[StateT, DepsT, NewOutputT, SourceT, HandledT]:  """Apply a transformation to the branch's output.  Args:  func: Transformation function to apply.  Returns:  A new DecisionBranchBuilder where the provided transform is applied prior to generating the final output.  """ return DecisionBranchBuilder( decision=self._decision, source=self._source, matches=self._matches, path_builder=self._path_builder.transform(func), ) 

map

map( *, fork_id: str | None = None, downstream_join_id: str | None = None ) -> DecisionBranchBuilder[ StateT, DepsT, T, SourceT, HandledT ] 

Spread the branch's output.

To do this, the current output must be iterable, and any subsequent steps in the path being built for this branch will be applied to each item of the current output in parallel.

Parameters:

Name Type Description Default
fork_id str | None

Optional ID for the fork, defaults to a generated value

None
downstream_join_id str | None

Optional ID of a downstream join node which is involved when mapping empty iterables

None

Returns:

Type Description
DecisionBranchBuilder[StateT, DepsT, T, SourceT, HandledT]

A new DecisionBranchBuilder where mapping is performed prior to generating the final output.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
def map( self: DecisionBranchBuilder[StateT, DepsT, Iterable[T], SourceT, HandledT] | DecisionBranchBuilder[StateT, DepsT, AsyncIterable[T], SourceT, HandledT], *, fork_id: str | None = None, downstream_join_id: str | None = None, ) -> DecisionBranchBuilder[StateT, DepsT, T, SourceT, HandledT]:  """Spread the branch's output.  To do this, the current output must be iterable, and any subsequent steps in the path being built for this  branch will be applied to each item of the current output in parallel.  Args:  fork_id: Optional ID for the fork, defaults to a generated value  downstream_join_id: Optional ID of a downstream join node which is involved when mapping empty iterables  Returns:  A new DecisionBranchBuilder where mapping is performed prior to generating the final output.  """ return DecisionBranchBuilder( decision=self._decision, source=self._source, matches=self._matches, path_builder=self._path_builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id), ) 

label

Apply a label to the branch at the current point in the path being built.

These labels are only used in generated mermaid diagrams.

Parameters:

Name Type Description Default
label str

The label to apply.

required

Returns:

Type Description
DecisionBranchBuilder[StateT, DepsT, OutputT, SourceT, HandledT]

A new DecisionBranchBuilder where the label has been applied at the end of the current path being built.

Source code in pydantic_graph/pydantic_graph/beta/decision.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
def label(self, label: str) -> DecisionBranchBuilder[StateT, DepsT, OutputT, SourceT, HandledT]:  """Apply a label to the branch at the current point in the path being built.  These labels are only used in generated mermaid diagrams.  Args:  label: The label to apply.  Returns:  A new DecisionBranchBuilder where the label has been applied at the end of the current path being built.  """ return DecisionBranchBuilder( decision=self._decision, source=self._source, matches=self._matches, path_builder=self._path_builder.label(label), )