Maintenance of Ruby 2.0.0 ended on February 24, 2016. Read more
A Fixnum holds Integer values that can be represented in a native machine word (minus 1 bit). If any operation on a Fixnum exceeds this range, the value is automatically converted to a Bignum.
Fixnum objects have immediate value. This means that when they are assigned or passed as parameters, the actual object is passed, rather than a reference to that object. Assignment does not alias Fixnum objects. There is effectively only one Fixnum object instance for any given integer value, so, for example, you cannot add a singleton method to a Fixnum.
Returns fix modulo other. See numeric.divmod for more information.
static VALUE fix_mod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod); return LONG2NUM(mod); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_modulo(x, y); case T_FLOAT: return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y))); default: return rb_num_coerce_bin(x, y, '%'); } } Bitwise AND.
static VALUE fix_and(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long val = FIX2LONG(x) & FIX2LONG(y); return LONG2NUM(val); } if (RB_TYPE_P(y, T_BIGNUM)) { return rb_big_and(y, x); } bit_coerce(&x, &y, TRUE); return rb_funcall(x, rb_intern("&"), 1, y); } Performs multiplication: the class of the resulting object depends on the class of numeric and on the magnitude of the result.
static VALUE fix_mul(VALUE x, VALUE y) { if (FIXNUM_P(y)) { #ifdef __HP_cc /* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */ volatile #endif long a, b; #if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG LONG_LONG d; #else VALUE r; #endif a = FIX2LONG(x); b = FIX2LONG(y); #if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG d = (LONG_LONG)a * b; if (FIXABLE(d)) return LONG2FIX(d); return rb_ll2inum(d); #else if (FIT_SQRT_LONG(a) && FIT_SQRT_LONG(b)) return LONG2FIX(a*b); if (a == 0) return x; if (MUL_OVERFLOW_FIXNUM_P(a, b)) r = rb_big_mul(rb_int2big(a), rb_int2big(b)); else r = LONG2FIX(a * b); return r; #endif } switch (TYPE(y)) { case T_BIGNUM: return rb_big_mul(y, x); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '*'); } } Raises fix to the numeric power, which may be negative or fractional.
2 ** 3 #=> 8 2 ** -1 #=> (1/2) 2 ** 0.5 #=> 1.4142135623731
static VALUE fix_pow(VALUE x, VALUE y) { long a = FIX2LONG(x); if (FIXNUM_P(y)) { long b = FIX2LONG(y); if (a == 1) return INT2FIX(1); if (a == -1) { if (b % 2 == 0) return INT2FIX(1); else return INT2FIX(-1); } if (b < 0) return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y); if (b == 0) return INT2FIX(1); if (b == 1) return x; if (a == 0) { if (b > 0) return INT2FIX(0); return DBL2NUM(INFINITY); } return int_pow(a, b); } switch (TYPE(y)) { case T_BIGNUM: if (a == 1) return INT2FIX(1); if (a == -1) { if (int_even_p(y)) return INT2FIX(1); else return INT2FIX(-1); } if (negative_int_p(y)) return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y); if (a == 0) return INT2FIX(0); x = rb_int2big(FIX2LONG(x)); return rb_big_pow(x, y); case T_FLOAT: if (RFLOAT_VALUE(y) == 0.0) return DBL2NUM(1.0); if (a == 0) { return DBL2NUM(RFLOAT_VALUE(y) < 0 ? INFINITY : 0.0); } if (a == 1) return DBL2NUM(1.0); { double dy = RFLOAT_VALUE(y); if (a < 0 && dy != round(dy)) return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y); return DBL2NUM(pow((double)a, dy)); } default: return rb_num_coerce_bin(x, y, rb_intern("**")); } } Performs addition: the class of the resulting object depends on the class of numeric and on the magnitude of the result.
static VALUE fix_plus(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b, c; VALUE r; a = FIX2LONG(x); b = FIX2LONG(y); c = a + b; r = LONG2NUM(c); return r; } switch (TYPE(y)) { case T_BIGNUM: return rb_big_plus(y, x); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '+'); } } Performs subtraction: the class of the resulting object depends on the class of numeric and on the magnitude of the result.
static VALUE fix_minus(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b, c; VALUE r; a = FIX2LONG(x); b = FIX2LONG(y); c = a - b; r = LONG2NUM(c); return r; } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_minus(x, y); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '-'); } } Negates fix (which might return a Bignum).
static VALUE fix_uminus(VALUE num) { return LONG2NUM(-FIX2LONG(num)); } Performs division: the class of the resulting object depends on the class of numeric and on the magnitude of the result.
static VALUE fix_div(VALUE x, VALUE y) { return fix_divide(x, y, '/'); } Returns true if the value of fix is less than that of real.
static VALUE fix_lt(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse; case T_FLOAT: return rb_integer_float_cmp(x, y) == INT2FIX(-1) ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y, '<'); } } Shifts fix left count positions (right if count is negative).
static VALUE rb_fix_lshift(VALUE x, VALUE y) { long val, width; val = NUM2LONG(x); if (!FIXNUM_P(y)) return rb_big_lshift(rb_int2big(val), y); width = FIX2LONG(y); if (width < 0) return fix_rshift(val, (unsigned long)-width); return fix_lshift(val, width); } Returns true if the value of fix is less than or equal to that of real.
static VALUE fix_le(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse; case T_FLOAT: { VALUE rel = rb_integer_float_cmp(x, y); return rel == INT2FIX(-1) || rel == INT2FIX(0) ? Qtrue : Qfalse; } default: return rb_num_coerce_relop(x, y, rb_intern("<=")); } } Comparison—Returns -1, 0, +1 or nil depending on whether fix is less than, equal to, or greater than numeric. This is the basis for the tests in Comparable.
nil is returned if the two values are incomparable.
static VALUE fix_cmp(VALUE x, VALUE y) { if (x == y) return INT2FIX(0); if (FIXNUM_P(y)) { if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1); return INT2FIX(-1); } switch (TYPE(y)) { case T_BIGNUM: return rb_big_cmp(rb_int2big(FIX2LONG(x)), y); case T_FLOAT: return rb_integer_float_cmp(x, y); default: return rb_num_coerce_cmp(x, y, rb_intern("<=>")); } } Return true if fix equals other numerically.
1 == 2 #=> false 1 == 1.0 #=> true
static VALUE fix_equal(VALUE x, VALUE y) { if (x == y) return Qtrue; if (FIXNUM_P(y)) return Qfalse; switch (TYPE(y)) { case T_BIGNUM: return rb_big_eq(y, x); case T_FLOAT: return rb_integer_float_eq(x, y); default: return num_equal(x, y); } } Return true if fix equals other numerically.
1 == 2 #=> false 1 == 1.0 #=> true
static VALUE fix_equal(VALUE x, VALUE y) { if (x == y) return Qtrue; if (FIXNUM_P(y)) return Qfalse; switch (TYPE(y)) { case T_BIGNUM: return rb_big_eq(y, x); case T_FLOAT: return rb_integer_float_eq(x, y); default: return num_equal(x, y); } } Returns true if the value of fix is greater than that of real.
static VALUE fix_gt(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse; case T_FLOAT: return rb_integer_float_cmp(x, y) == INT2FIX(1) ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y, '>'); } } Returns true if the value of fix is greater than or equal to that of real.
static VALUE fix_ge(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse; case T_FLOAT: { VALUE rel = rb_integer_float_cmp(x, y); return rel == INT2FIX(1) || rel == INT2FIX(0) ? Qtrue : Qfalse; } default: return rb_num_coerce_relop(x, y, rb_intern(">=")); } } Shifts fix right count positions (left if count is negative).
static VALUE rb_fix_rshift(VALUE x, VALUE y) { long i, val; val = FIX2LONG(x); if (!FIXNUM_P(y)) return rb_big_rshift(rb_int2big(val), y); i = FIX2LONG(y); if (i == 0) return x; if (i < 0) return fix_lshift(val, (unsigned long)-i); return fix_rshift(val, i); } Bit Reference—Returns the nth bit in the binary representation of fix, where fix is the least significant bit.
a = 0b11001100101010 30.downto(0) do |n| print a[n] end
produces:
0000000000000000011001100101010 static VALUE fix_aref(VALUE fix, VALUE idx) { long val = FIX2LONG(fix); long i; idx = rb_to_int(idx); if (!FIXNUM_P(idx)) { idx = rb_big_norm(idx); if (!FIXNUM_P(idx)) { if (!RBIGNUM_SIGN(idx) || val >= 0) return INT2FIX(0); return INT2FIX(1); } } i = FIX2LONG(idx); if (i < 0) return INT2FIX(0); if (SIZEOF_LONG*CHAR_BIT-1 < i) { if (val < 0) return INT2FIX(1); return INT2FIX(0); } if (val & (1L<<i)) return INT2FIX(1); return INT2FIX(0); } Bitwise EXCLUSIVE OR.
static VALUE fix_xor(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long val = FIX2LONG(x) ^ FIX2LONG(y); return LONG2NUM(val); } if (RB_TYPE_P(y, T_BIGNUM)) { return rb_big_xor(y, x); } bit_coerce(&x, &y, TRUE); return rb_funcall(x, rb_intern("^"), 1, y); } Returns the absolute value of fix.
-12345.abs #=> 12345 12345.abs #=> 12345
static VALUE fix_abs(VALUE fix) { long i = FIX2LONG(fix); if (i < 0) i = -i; return LONG2NUM(i); } Performs integer division: returns integer value.
static VALUE fix_idiv(VALUE x, VALUE y) { return fix_divide(x, y, rb_intern("div")); } See Numeric#divmod.
static VALUE fix_divmod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long div, mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod); return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod)); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_divmod(x, y); case T_FLOAT: { double div, mod; volatile VALUE a, b; flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod); a = dbl2ival(div); b = DBL2NUM(mod); return rb_assoc_new(a, b); } default: return rb_num_coerce_bin(x, y, rb_intern("divmod")); } } Returns true if fix is an even number.
static VALUE fix_even_p(VALUE num) { if (num & 2) { return Qfalse; } return Qtrue; } Returns the floating point result of dividing fix by numeric.
654321.fdiv(13731) #=> 47.6528293642124 654321.fdiv(13731.24) #=> 47.6519964693647
static VALUE fix_fdiv(VALUE x, VALUE y) { if (FIXNUM_P(y)) { return DBL2NUM((double)FIX2LONG(x) / (double)FIX2LONG(y)); } switch (TYPE(y)) { case T_BIGNUM: return rb_big_fdiv(rb_int2big(FIX2LONG(x)), y); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) / RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, rb_intern("fdiv")); } } Returns the absolute value of fix.
-12345.abs #=> 12345 12345.abs #=> 12345
static VALUE fix_abs(VALUE fix) { long i = FIX2LONG(fix); if (i < 0) i = -i; return LONG2NUM(i); } Returns fix modulo other. See numeric.divmod for more information.
static VALUE fix_mod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod); return LONG2NUM(mod); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_modulo(x, y); case T_FLOAT: return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y))); default: return rb_num_coerce_bin(x, y, '%'); } } Returns true if fix is an odd number.
static VALUE fix_odd_p(VALUE num) { if (num & 2) { return Qtrue; } return Qfalse; } Returns the number of bytes in the machine representation of a Fixnum.
1.size #=> 4 -1.size #=> 4 2147483647.size #=> 4
static VALUE fix_size(VALUE fix) { return INT2FIX(sizeof(long)); } Returns the Integer equal to int + 1.
1.next #=> 2 (-1).next #=> 0
static VALUE fix_succ(VALUE num) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } Converts fix to a Float.
static VALUE fix_to_f(VALUE num) { double val; val = (double)FIX2LONG(num); return DBL2NUM(val); } Returns a string containing the representation of fix radix base (between 2 and 36).
12345.to_s #=> "12345" 12345.to_s(2) #=> "11000000111001" 12345.to_s(8) #=> "30071" 12345.to_s(10) #=> "12345" 12345.to_s(16) #=> "3039" 12345.to_s(36) #=> "9ix"
static VALUE fix_to_s(int argc, VALUE *argv, VALUE x) { int base; if (argc == 0) base = 10; else { VALUE b; rb_scan_args(argc, argv, "01", &b); base = NUM2INT(b); } return rb_fix2str(x, base); } Returns true if fix is zero.
static VALUE fix_zero_p(VALUE num) { if (FIX2LONG(num) == 0) { return Qtrue; } return Qfalse; } Bitwise OR.
static VALUE fix_or(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long val = FIX2LONG(x) | FIX2LONG(y); return LONG2NUM(val); } if (RB_TYPE_P(y, T_BIGNUM)) { return rb_big_or(y, x); } bit_coerce(&x, &y, TRUE); return rb_funcall(x, rb_intern("|"), 1, y); }