|
| 1 | +#install.packages("ISLR") |
| 2 | +library(ISLR) |
| 3 | +#install.packages("tidyverse") |
| 4 | +library(tidyverse) |
| 5 | +#install.packages("funModeling") |
| 6 | +library(funModeling) |
| 7 | +#install.packages("caret") |
| 8 | +library(caret) |
| 9 | +#install.packages("pROC") |
| 10 | +library(pROC) |
| 11 | +#install.packages("class") |
| 12 | +library(class)#knn icin |
| 13 | +#install.packages("e1071") |
| 14 | +library(e1071)#knn icin |
| 15 | +#install.packages("kernlab") |
| 16 | +library(kernlab) #svm icin |
| 17 | +#install.packages("ROCR") |
| 18 | +library(ROCR) #roc icin |
| 19 | +#install.packages("neuralnet") |
| 20 | +library(neuralnet) |
| 21 | +#install.packages("GGally") |
| 22 | +library(GGally) |
| 23 | +#install.packages("nnet") |
| 24 | +library(nnet) |
| 25 | +#install.packages("rpart") |
| 26 | +library(rpart) |
| 27 | +#install.packages("cli") |
| 28 | +library(cli) |
| 29 | +#install.packages("tree") |
| 30 | +library(tree) |
| 31 | +#install.packages("rpart.plot") |
| 32 | +library(rpart.plot) |
| 33 | +#install.packages("randomForest") |
| 34 | +library(randomForest) |
| 35 | +#install.packages("gbm") |
| 36 | +library(gbm) |
| 37 | +#install.packages("xgboost") |
| 38 | +library(xgboost) |
| 39 | +#install.packages("DiagrammeR") |
| 40 | +library(DiagrammeR) |
| 41 | +#install.packages("mlbench") |
| 42 | +library(mlbench) |
| 43 | + |
| 44 | + |
| 45 | +set.seed(10111) |
| 46 | +x <- matrix(rnorm(40), 20, 2) |
| 47 | +y <- rep(c(-1,1), c(10,10)) |
| 48 | +head(x) |
| 49 | +head(y) |
| 50 | +x[y==1,] <- x[y==1,] + 1 |
| 51 | +head(x) |
| 52 | +plot(x, col=y+3,pch=19) |
| 53 | + |
| 54 | +df <- data.frame(x, y=as.factor(y)) |
| 55 | + |
| 56 | +#svm model |
| 57 | + |
| 58 | +svm_model1 <- svm(y~., data = df, kernel="polynomial", cost=10, scale = F) |
| 59 | +summary(svm_model1) |
| 60 | + |
| 61 | +plot(svm_model1, df) |
| 62 | + |
| 63 | +#SVM MODELİNİN NASIL OLUŞTUĞUNU ANLAMAK |
| 64 | +##=========================================================== |
| 65 | +#BURADA DF'NİN MİNİMUM VE MAKSİMUM DEĞERLERİ ARASINDA DEĞERLER OLUŞTURUP |
| 66 | +# SVM YAPISNININ NASIL ORTAYA ÇIKTIĞINI ANLAMAYA ÇALIŞACAĞIZ. |
| 67 | + |
| 68 | +a <- seq(from=apply(df,2, range)[1,1], |
| 69 | + to = apply(df, 2, range)[2,1], |
| 70 | + length = 5) |
| 71 | +b <- seq(from=apply(df,2, range)[1,2], |
| 72 | + to = apply(df, 2, range)[2,2], |
| 73 | + length = 5) |
| 74 | +expand.grid(a,b) |
| 75 | + |
| 76 | +make_grid <- function(x, n = 75) { |
| 77 | + g_range = apply(x, 2, range) |
| 78 | + x1 = seq(from = g_range[1,1], to = g_range[2,1], length = n) |
| 79 | + x2 = seq(from = g_range[1,2], to = g_range[2,2], length = n) |
| 80 | + expand.grid(X1 = x1, X2 = x2) |
| 81 | +} |
| 82 | + |
| 83 | +x_grid <- make_grid(x) |
| 84 | +x_grid[1:10,] |
| 85 | + |
| 86 | +y_grid <- predict(svm_model1, x_grid) |
| 87 | + |
| 88 | +plot(x_grid, col=c("red", "blue")[as.numeric(y_grid)], |
| 89 | + pch=19, cex=0.2) |
| 90 | + |
| 91 | +points(x, col=y+3, pch=19) |
| 92 | +points(x[svm_model1$index, ], pch="I", cex=2) |
| 93 | + |
| 94 | +beta <- drop(t(svm_model1$coefs)%*%x[svm_model1$index,]) |
| 95 | +b0 <- svm_model1$rho |
| 96 | + |
| 97 | +curve(b0 / beta[2], -beta[1] / beta[2]) |
| 98 | +curve((b0 - 1) / beta[2], -beta[1] / beta[2], lty = 2) |
| 99 | +curve((b0 + 1) / beta[2], -beta[1] / beta[2], lty = 2) |
| 100 | +#===========================================================# |
| 101 | + |
| 102 | + |
| 103 | +#svm tahmin bölümü |
| 104 | + |
| 105 | +pred <- predict(svm_model1) |
| 106 | +class_error(df$y, svm_model1$fitted) |
| 107 | + |
| 108 | +df$y <- ifelse(df$y==-1, 0,1) |
| 109 | +svm_model1$fitted <- ifelse(svm_model1$fitted==-1, 0, 1) |
| 110 | + |
| 111 | +tb <- table(svm_model1$fitted, df$y) |
| 112 | +confusionMatrix(tb, positive = "1") |
| 113 | +svm_model1$fitted |
| 114 | + |
| 115 | +# SVM DOĞRUSAL OLMAYAN MODELLER |
| 116 | + |
| 117 | +#İLK MODEL |
| 118 | +#====================================================== |
| 119 | +#load ile yüklenen data R içinden ismiyle çağrılabilir. |
| 120 | +load(file = "ESL.mixture.rda") |
| 121 | +df <- ESL.mixture |
| 122 | +attach(df) |
| 123 | +remove(x, y) |
| 124 | +plot(x, col=y+1) |
| 125 | +df <- data.frame(x=x, y=as.factor(y)) |
| 126 | + |
| 127 | +n_svm_fit <- svm(factor(y)~., data = df, scale=F, kernel="radial", cost=5) |
| 128 | +svm_fit |
| 129 | + |
| 130 | +x_grid <- expand.grid(X1 = px1, X2 = px2) |
| 131 | +y_grid <- predict(n_svm_fit, x_grid) |
| 132 | + |
| 133 | + |
| 134 | +plot(x_grid, |
| 135 | + col = as.numeric(y_grid), |
| 136 | + pch = 20, |
| 137 | + cex = .2) |
| 138 | + |
| 139 | +points(x, col = y + 1, pch = 19) |
| 140 | + |
| 141 | +dv <- predict(n_svm_fit, x_grid, decision.values = TRUE) |
| 142 | + |
| 143 | +contour(px1, px2, |
| 144 | + matrix(attributes(dv)$decision, length(px1), length(px2)), |
| 145 | + level = 0, |
| 146 | + add = TRUE) |
| 147 | + |
| 148 | + |
| 149 | +contour(px1, px2, |
| 150 | + matrix(attributes(dv)$decision, length(px1), length(px2)), |
| 151 | + level = 0.5, |
| 152 | + add = TRUE, |
| 153 | + col = "blue", |
| 154 | + lwd = 2) |
| 155 | + |
| 156 | + |
| 157 | +# İKİNCİ MODEL VE MODEL TUNİNG |
| 158 | +#========================================================= |
| 159 | +data("segmentationData") |
| 160 | +df <- segmentationData |
| 161 | +as.tibble(df) |
| 162 | +glimpse(df) |
| 163 | +# biz bu veriseti içinde class değişkenini bağımlı değişken olarak alacağız. |
| 164 | +table(df$Class) |
| 165 | + |
| 166 | +svm_train <- df %>% filter(Case=="Train") %>% select(-Case) |
| 167 | +svm_test <- df %>% filter(Case=="Test") %>% select(-Case) |
| 168 | + |
| 169 | +svm_train_x <- svm_train %>% select(-Class) |
| 170 | +svm_test_x <- svm_test %>% select(-Class) |
| 171 | + |
| 172 | +svm_test_y <- svm_test$Class |
| 173 | +svm_train_y <- svm_train$Class |
| 174 | + |
| 175 | +#model tune işlemleri için ayarlamalar. |
| 176 | + |
| 177 | +ctrl <- trainControl(method = "cv", summaryFunction = twoClassSummary, |
| 178 | + classProbs = TRUE) |
| 179 | + |
| 180 | +svm_grid <- expand.grid(sigma=0.08, |
| 181 | + C = seq(0.001, 0.2, length=10)) |
| 182 | + |
| 183 | +svm_tune <- train(svm_train_x, svm_train_y, method="svmRadial", |
| 184 | + trControl = ctrl, |
| 185 | + tuneGrid=svm_grid, metric="ROC") |
| 186 | +svm_tune |
| 187 | +plot(svm_tune) |
| 188 | +confusionMatrix(predict(svm_tune, test_x), svm_test_y, positive = "WS") |
| 189 | + |
| 190 | +y_pred <- predict(svm_tune, svm_test_x, type="raw") |
| 191 | + |
| 192 | +test_prob <- predict(svm_tune, svm_test_x, type = "prob") |
| 193 | +test_prob$WS |
| 194 | +roc(svm_test_y ~ test_prob$WS, plot = TRUE, print.auc = TRUE) |
| 195 | + |
| 196 | + |
| 197 | + |
| 198 | + |
| 199 | + |
| 200 | + |
| 201 | + |
| 202 | + |
| 203 | + |
| 204 | + |
| 205 | + |
| 206 | + |
| 207 | + |
| 208 | + |
| 209 | + |
| 210 | + |
| 211 | + |
| 212 | + |
| 213 | + |
| 214 | + |
| 215 | + |
| 216 | + |
| 217 | + |
| 218 | + |
| 219 | + |
| 220 | + |
0 commit comments