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1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible
with Android 10.

The use of “MUST”, “MUST NOT", “REQUIRED", “SHALL", “SHALL NOT", “SHOULD", “SHOULD NOT",
“RECOMMENDED", “MAY”, and “OPTIONAL" is per the IETF standard defined in REC2119 .

As used in this document, a “device implementer” or “implementer” is a person or organization
developing a hardware/software solution running Android 10. A “device implementation” or
“implementation” is the hardware/software solution so developed.

To be considered compatible with Android 10, device implementations MUST meet the requirements
presented in this Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in section 10 is silent, ambiguous, or
incomplete, it is the responsibility of the device implementer to ensure compatibility with existing
implementations.

For this reason, the Android Open Source Project is both the reference and preferred implementation
of Android. Device implementers are STRONGLY RECOMMENDED to base their implementations to
the greatest extent possible on the “upstream” source code available from the Android Open Source
Project. While some components can hypothetically be replaced with alternate implementations, it is
STRONGLY RECOMMENDED to not follow this practice, as passing the software tests will become
substantially more difficult. It is the implementer’s responsibility to ensure full behavioral
compatibility with the standard Android implementation, including and beyond the Compatibility Test
Suite. Finally, note that certain component substitutions and modifications are explicitly forbidden by
this document.

Many of the resources linked to in this document are derived directly or indirectly from the Android
SDK and will be functionally identical to the information in that SDK’s documentation. In any cases
where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK
documentation, the SDK documentation is considered authoritative. Any technical details provided in
the linked resources throughout this document are considered by inclusion to be part of this
Compatibility Definition.

1.1 Document Structure
1.1.1. Requirements by Device Type

Section 2 contains all of the requirements that apply to a specific device type. Each subsection of
Section 2 is dedicated to a specific device type.

All the other requirements, that universally apply to any Android device implementations, are listed in
the sections after Section 2 . These requirements are referenced as "Core Requirements" in this
document.

1.1.2. Requirement ID
Requirement ID is assigned for MUST requirements.

e The ID is assigned for MUST requirements only.
e STRONGLY RECOMMENDED requirements are marked as [SR] but ID is not assigned.
e The ID consists of : Device Type ID - Condition ID - Requirement ID (e.g. C-0-1).

Each ID is defined as below:

e Device Type ID (see more in 2. Device Types )
o C: Core (Requirements that are applied to any Android device
implementations)

o H: Android Handheld device
o T: Android Television device
o A: Android Automotive implementation
o W: Android Watch implementation
o Tab: Android Tablet implementation
e Condition ID
o When the requirement is unconditional, this ID is set as 0.

o When the requirement is conditional, 1 is assigned for the 1st condition and
the number increments by 1 within the same section and the same device

type.
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e Requirement ID
o This ID starts from 1 and increments by 1 within the same section and the
same condition.

1.1.3. Requirement ID in Section 2

The Requirement ID in Section 2 starts with the corresponding section ID that is followed by the
Requirement ID described above.

e The ID in Section 2 consists of : Section ID / Device Type ID - Condition ID - Requirement
ID (e.g. 7.4.3/A-0-1).

2. Device Types

While the Android Open Source Project provides a software stack that can be used for a variety of
device types and form factors, there are a few device types that have a relatively better established
application distribution ecosystem.

This section describes those device types, and additional requirements and recommendations
applicable for each device type.

All Android device implementations that do not fit into any of the described device types MUST still
meet all requirements in the other sections of this Compatibility Definition.

2.1 Device Configurations

For the major differences in hardware configuration by device type, see the device-specific
requirements that follow in this section.

2.2. Handheld Requirements

An Android Handheld device refers to an Android device implementation that is typically used by
holding it in the hand, such as an mp3 player, phone, or tablet.

Android device implementations are classified as a Handheld if they meet all the following criteria:

e Have a power source that provides mobility, such as a battery.
e Have a physical diagonal screen size in the range of 2.5 to 8 inches.

The additional requirements in the rest of this section are specific to Android Handheld device
implementations.

. Note: Requirements that do not apply to Android Tablet devices are marked with an *.
2.2.1. Hardware

Handheld device implementations:

e [7.1.1.1/H-0-1] MUST have at least one Android-compatible display at least 2.5 inches in
physical diagonal size and each Android-compatible display MUST meet all requirements
described on this document.

e [7.1.1.3/H-SR] Are STRONGLY RECOMMENDED to provide users an affordance to
change the display size (screen density).

If Handheld device implementations claim support for high dynamic range displays through
Configuration.isScreenHdr() , they:

e [7.1.4.5/H-1-1] MUST advertise support for the EGL_EXT gl colorspace_bt2020 pq,
EGL EXT surface SMPTE2086 metadata, EGL EXT surface CTA861 3 metadata,
VK_EXT_swapchain_colorspace , and VK_EXT hdr_metadata extensions.

Handheld device implementations:

e [7.1.5/H-0-1] MUST include support for legacy application compatibility mode as
implemented by the upstream Android open source code. That is, device implementations
MUST NOT alter the triggers or thresholds at which compatibility mode is activated, and
MUST NOT alter the behavior of the compatibility mode itself.

e [7.2 .1/H-0-1] MUST include support for third-party Input Method Editor (IME)
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applications.

e [7.2 .3/H-0-3] MUST provide the Home function on all the Android-compatible displays
that provide the home screen.

e [7.2 .3/H-0-4] MUST provide the Back function on all the Android-compatible displays and
the Recents function on at least one of the Android-compatible displays.

e [7.2 .3/H-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE BACK ) to the foreground application. These events MUST NOT be consumed
by the system and CAN be triggered by outside of the Android device (e.g. external
hardware keyboard connected to the Android device).

e [7.2 .4/H-0-1] MUST support touchscreen input.

e [7.2 .4/H-SR] Are STRONGLY RECOMMENDED to launch the user-selected assist app, in
other words the app that implements VoicelnteractionService, or an activity handling the
ACTION_ASSIST on long-press of KEYCODE _MEDIA PLAY_ PAUSE or
KEYCODE HEADSETHOOK if the foreground activity does not handle those long-press
events.

e [7.3.1/H-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Handheld device implementations include a 3-axis accelerometer, they:

e [7.3.1/H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

If Handheld device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag, they:

e [7.3.3/H-2-1] MUST report GNSS measurements, as soon as they are found, even if a
location calculated from GPS/GNSS is not yet reported.

e [7.3.3/H-2-2] MUST report GNSS pseudoranges and pseudorange rates, that, in open-sky
conditions after determining the location, while stationary or moving with less than 0.2
meter per second squared of acceleration, are sufficient to calculate position within 20
meters, and speed within 0.2 meters per second, at least 95% of the time.

If Handheld device implementations include a 3-axis gyroscope, they:

e [7.3.4/H-3-1] MUST be able to report events up to a frequency of at least 100 Hz.

e [ 7.3 .4/H-3-2] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

Handheld device implementations that can make a voice call and indicate any value other than
PHONE_TYPE NONE in getPhoneType :

e [ 7.3 .8/H] SHOULD include a proximity sensor.

Handheld device implementations:

e [7.3.11/H-SR] Are RECOMMENDED to support pose sensor with 6 degrees of freedom.
e [7.4 .3/H] SHOULD include support for Bluetooth and Bluetooth LE.

If Handheld device implementations include a metered connection, they:

e [7.4 .7/H-1-1] MUST provide the data saver mode.

If Handheld device implementations include a logical camera device that lists capabilities using
CameraMetadata. REQUEST AVAILABLE CAPABILITIES LOGICAL MULTI CAMERA , they:

e [7.5.4/H-1-1] MUST have normal field of view (FOV) by default and it MUST be between
50 and 90 degrees.

Handheld device implementations:

e [ 7.6 .1/H-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

e [7.6 .1/H-0-2] MUST return “true” for ActivityManager.isLowRamDevice() when there is less
than 1GB of memory available to the kernel and userspace.

If Handheld device implementations declare support of only a 32-bit ABI:
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[ 7.6 .1/H-1-1] The memory available to the kernel and userspace MUST be at least
416MB if the default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

[ 7.6 .1/H-2-1] The memory available to the kernel and userspace MUST be at least
592MB if the default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

[ 7.6 .1/H-3-1] The memory available to the kernel and userspace MUST be at least
896MB if the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

[ 7.6 .1/H-4-1] The memory available to the kernel and userspace MUST be at least
1344MB if the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

If Handheld device implementations declare support of 32-bit and 64-bit ABIs:

e [7.6 .1/H-5-1] The memory available to the kernel and userspace MUST be at least
816MB if the default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

e [7.6 .1/H-6-1] The memory available to the kernel and userspace MUST be at least
944MB if the default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

e [7.6 .1/H-7-1] The memory available to the kernel and userspace MUST be at least
1280MB if the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

e [7.6.1/H-8-1] The memory available to the kernel and userspace MUST be at least
1824MB if the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

If Handheld device implementations include less than or equal to 1GB of memory available to the
kernel and userspace, they:

e [7.6 .1/H-9-1] MUST declare the feature flag android.hardware.ram.low .
e [7.6.1/H-9-2] MUST have at least 1.1 GB of non-volatile storage for application private
data (a.k.a. "/data" partition).

If Handheld device implementations include more than 1GB of memory available to the kernel and
userspace, they:

e [7.6.1/H-10-1] MUST have at least 4GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

e SHOULD declare the feature flag android.hardware.ram.normal .

Handheld device implementations:

7.6 .2/H-0-1] MUST NOT provide an application shared storage smaller than 1 GiB.
7.7 .1/H] SHOULD include a USB port supporting peripheral mode.

o
o
If handheld device implementations include a USB port supporting peripheral mode, they:

e [7.7 .1/H-1-1] MUST implement the Android Open Accessory (AOA) API.

If Handheld device implementations include a USB port supporting host mode, they:

e [7.7 .2/H-1-1] MUST implement the USB audio class as documented in the Android SDK
documentation.

Handheld device implementations:

e [7.8 .1/H-0-1] MUST include a microphone.
e [7.8.2/H-0-1] MUST have an audio output and declare android.hardware.audio.output .

If Handheld device implementations are capable of meeting all the performance requirements for
supporting VR mode and include support for it, they:

e [7.9 .1/H-1-1] MUST declare the android.hardware.vr.high_performance feature flag.

e [7.9 .1/H-1-2] MUST include an application implementing
android.service.vr.VrListenerService that can be enabled by VR applications via
android.app.Activity#setVrModeEnabled .
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If Handheld device implementations include one or more USB-C port(s) in host mode and implement
(USB audio class), in addition to requirements in section 7.7.2, they:

e [7.8.2.2/H-1-1] MUST provide the following software mapping of HID codes:

KEYCODE_VOICE ASSIST

Function Mappings Context Behavior
Input : Short press
Output : Play or pause
Input : Long press
Media Output : Launch voice command
playback | Sends :
android.speech.action.VOICE_SEARCH_HANDS_FREE if
the device is locked or its screen is off. Sends
HID usage page : 0x0C android.speech.RecognizerIntent. ACTION WEB SEARCH
HID usage : 0x0CD otherwise
A Kernel key : KEY PLAYPAUSE
Android key : Input : Short press
KEYCODE MEDIA PLAY PAUSE | Incoming | Output : Accept call
call Input : Long press
Output : Reject call
Input : Short press
Ongoing | Output : End call
call Input : Long press
Output : Mute or unmute microphone
HID usage page : 0x0C Media
B HID usage : 0x0E9 playback, | Input : Short or long press
Kernel key : KEY VOLUMEUP Ongoing | Output : Increases the system or headset volume
Android key : VOLUME_UP call
HID usage page : 0x0C Media
HID usage : 0xOEA i
: playback, | Input : Short or long press
¢ Kernel key : Ongoing | Output : Decreases the system or headset volume
KEY VOLUMEDOWN cal? g Output: y
Android key : VOLUME _DOWN
HID usage page : 0x0C All. Can
E(I:nl:asl‘aki?:' 0x0CF be g Input : Short or long press
: triggere . i
D KEY VOICECOMMAND in any Output : Launch voice command
Android key : instance.

e [7.8.2.2/H-1-2] MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after
the USB audio interfaces and endpoints have been properly enumerated in order to
identify the type of terminal connected.

When the USB audio terminal types 0x0302 is detected, they:

e [7.8.2.2/H-2-1] MUST broadcast Intent ACTION_HEADSET_PLUG with "microphone”
extra setto 0.

When the USB audio terminal types 0x0402 is detected, they:

e [7.8.2.2/H-3-1] MUST broadcast Intent ACTION_HEADSET_PLUG with "microphone”
extra set to 1.

When API AudioManager.getDevices() is called while the USB peripheral is connected they:

e [7.8.2.2/H-4-1] MUST list a device of type AudioDevicelnfo.TYPE_USB_HEADSET and
role isSink() if the USB audio terminal type field is 0x0302.

e [7.8.2.2/H-4-2] MUST list a device of type AudioDevicelnfo. TYPE_USB_HEADSET and
role isSink() if the USB audio terminal type field is 0x0402.

e [7.8.2.2/H-4-3] MUST list a device of type AudioDevicelnfo. TYPE_USB_HEADSET and
role isSource() if the USB audio terminal type field is 0x0402.

android
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e [7.8.2.2/H-4-4] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSink() if the USB audio terminal type field is 0x603.

e [7.8.2.2/H-4-5] MUST list a device of type AudioDevicelnfo. TYPE_USB_DEVICE and role
isSource() if the USB audio terminal type field is 0x604.

e [7.8.2.2/H-4-6] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSink() if the USB audio terminal type field is 0x400.

e [7.8.2.2/H-4-7] MUST list a device of type AudioDevicelnfo.TYPE_USB_DEVICE and role
isSource() if the USB audio terminal type field is 0x400.

e [7.8.2.2/H-SR] Are STRONGLY RECOMMENDED upon connection of a USB-C audio
peripheral, to perform enumeration of USB descriptors, identify terminal types and
broadcast Intent ACTION_HEADSET_PLUG in less than 1000 milliseconds.

2.2.2. Multimedia

Handheld device implementations MUST support the following audio encoding and decoding formats
and make them available to third-party applications:

e [5.1/H-0-1] AMR-NB

e [5.1/H-0-2] AMR-WB

e [ 5.1 /H-0-3] MPEG-4 AAC Profile (AAC LC)

e [5.1 /H-0-4] MPEG-4 HE AAC Profile (AAC+)

e [5.1 /H-0-5] AAC ELD (enhanced low delay AAC)

Handheld device implementations MUST support the following video encoding formats and make
them available to third-party applications:

e [5.2 /H-0-1] H.264 AVC
e [5.2 /H-0-2] VP8

Handheld device implementations MUST support the following video decoding formats and make
them available to third-party applications:

e [5.3 /H-0-1]1 H.264 AVC

e [5.3 /H-0-2] H.265 HEVC
e [5.3 /H-0-3] MPEG-4 SP
e [5.3 /H-0-4] VP8

e [5.3 /H-0-5] VP9

2.2.3. Software

Handheld device implementations:

e [3.2.3.1/H-0-1] MUST have an application that handles the ACTION_GET_CONTENT,
ACTION_OPEN_DOCUMENT , ACTION_OPEN_DOCUMENT _TREE, and
ACTION_CREATE_DOCUMENT intents as described in the SDK documents, and provide
the user affordance to access the document provider data by using DocumentsProvider
API.

e [3.4.1/H-0-1] MUST provide a complete implementation of the android.webkit. Webview
API.

e [3.4.2/H-0-1] MUST include a standalone Browser application for general user web
browsing.

e [3.8.1/H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that
supports in-app pinning of shortcuts, widgets and widgetFeatures .

e [3.8.1/H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that
provides quick access to the additional shortcuts provided by third-party apps through the
ShortcutManager API.

e [3.8.1/H-SR] Are STRONGLY RECOMMENDED to include a default launcher app that
shows badges for the app icons.

e [3.8.2/H-SR] Are STRONGLY RECOMMENDED to support third-party app widgets.

e [3.8.3/H-0-1] MUST allow third-party apps to notify users of notable events through the
Notification and NotificationManager APl classes.

e [3.8 .3/H-0-2] MUST support rich notifications.

e [ 3.8 .3/H-0-3] MUST support heads-up notifications.
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[ 3.8 .3/H-0-4] MUST include a notification shade, providing the user the ability to directly
control (e.g. reply, snooze, dismiss, block) the notifications through user affordance such
as action buttons or the control panel as implemented in the AOSP.

e [ 3.8 .3/H-0-5] MUST display the choices provided through Remotelnput.Builder setChoices()
in the notification shade.

e [3.8.3/H-SR] Are STRONGLY RECOMMENDED to display the first choice provided through
Remotelnput.Builder setChoices() in the notification shade without additional user
interaction.

e [3.8.3/H-SR] Are STRONGLY RECOMMENDED to display all the choices provided through
Remotelnput.Builder setChoices() in the notification shade when the user expands all
notifications in the notification shade.

e [3.8.3.1/H-SR] Are STRONGLY RECOMMENDED to display actions for which
Notification.Action.Builder.setContextual is set as true in-line with the replies displayed by
Notification.Remoteinput.Builder.setChoices .

e [ 3.8 .4/H-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to

handle the Assist action .

If Handheld device implementations support Assist action, they:

e [3.8 .4/H-SR] Are STRONGLY RECOMMENDED to use long press on HOME key as the
designated interaction to launch the assist app as described in section 7.2.3 . MUST
launch the user-selected assist app, in other words the app that implements
VoicelnteractionService , or an activity handling the ACTION_ASSIST intent.

If Android Handheld device implementations support a lock screen, they:

e [3.8.10/H-1-1] MUST display the Lock screen Notifications including the Media
Notification Template.

If Handheld device implementations support a secure lock screen, they:

e [3.9 /H-1-1] MUST implement the full range of device administration policies defined in
the Android SDK documentation.

e [3.9 /H-1-2] MUST declare the support of managed profiles via the
android.software.managed_users feature flag, except when the device is configured so that it
would report itself as a low RAM device or so that it allocates internal (non-removable)
storage as shared storage.

Handheld device implementations:

[ 3.10 /H-0-1] MUST support third-party accessibility services.

[ 3.10 /H-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

[ 3.11 /H-0-1] MUST support installation of third-party TTS engines.

[ 3.11 /H-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [3.13 /H-SR] Are STRONGLY RECOMMENDED to include a Quick Settings Ul component.

If Android handheld device implementations declare FEATURE BLUETOOTH or FEATURE WIFI
support, they:

e [3.16 /H-1-1] MUST support the companion device pairing feature.
If the navigation function is provided as an on-screen, gesture-based action:

e [7.2 .3/H] The gesture recognition zone for the Home function SHOULD be no higher than
32 dp in height from the bottom of the screen.

If Handheld device implementations provide a navigation function as a gesture from anywhere on the
left and right edges of the screen:

e [7.2 .3/H-0-1] The navigation function's gesture area MUST be less than 40 dp in width on
each side. The gesture area SHOULD be 24 dp in width by default.

android
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2.2.4. Performance and Power

e [8.1 /H-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render
frames MUST NOT happen more often than 5 frames in a second, and SHOULD be below
1 frames in a second.

e [8.1 /H-0-2] User interface latency . Device implementations MUST ensure low latency
user experience by scrolling a list of 10K list entries as defined by the Android
Compatibility Test Suite (CTS) in less than 36 secs.

e [8.1 /H-0-3] Task switching . When multiple applications have been launched, re-

launching an already-running application after it has been launched MUST take less than
1 second.

Handheld device implementations:

[ 8.2 /H-0-1] MUST ensure a sequential write performance of at least 5 MB/s.
[ 8.2 /H-0-2] MUST ensure a random write performance of at least 0.5 MB/s.
[ 8.2 /H-0-3] MUST ensure a sequential read performance of at least 15 MB/s.
[ 8.2 /H-0-4] MUST ensure a random read performance of at least 3.5 MB/s.

If Handheld device implementations include features to improve device power management that are

included in AOSP or extend the features that are included in AOSP, they:

e [8.3 /H-1-1] MUST provide user affordance to enable and disable the battery saver
feature.

e [8.3 /H-1-2] MUST provide user affordance to display all apps that are exempted from
App Standby and Doze power-saving modes.

Handheld device implementations:

e [ 8.4 /H-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.

e [8.4 /H-0-2] MUST report all power consumption values in milliampere hours (mAh).

e [8.4 /H-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid cputime kernel module
implementation.

e [ 8.4 /H-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

e [ 8.4 /H] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

If Handheld device implementations include a screen or video output, they:

e [8.4 /H-1-1] MUST honor the android.intent.action.POWER_USAGE_SUMMARY intent and
display a settings menu that shows this power usage.

2.2.5. Security Model
Handheld device implementations:

e [9.1 /H-0-1] MUST allow third-party apps to access the usage statistics via the
android.permission.PACKAGE _USAGE_STATS permission and provide a user-accessible
mechanism to grant or revoke access to such apps in response to the
android.settings. ACTION_USAGE_ACCESS _SETTINGS intent.

Handheld device implementations (* Not applicable for Tablet):

e [9.11 /H-0-2]* MUST back up the keystore implementation with an isolated execution
environment.

e [9.11 /H-0-3]* MUST have implementations of RSA, AES, ECDSA, and HMAC
cryptographic algorithms and MD5, SHA1, and SHA-2 family hash functions to properly
support the Android Keystore system's supported algorithms in an area that is securely
isolated from the code running on the kernel and above. Secure isolation MUST block all
potential mechanisms by which kernel or userspace code might access the internal state
of the isolated environment, including DMA. The upstream Android Open Source Project
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(AOSP) meets this requirement by using the Trusty implementation, but another ARM
TrustZone-based solution or a third-party reviewed secure implementation of a proper
hypervisor-based isolation are alternative options.

e [9.11 /H-0-4]* MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

e [9.11 /H-0-5]* MUST support key attestation where the attestation signing key is
protected by secure hardware and signing is performed in secure hardware. The
attestation signing keys MUST be shared across large enough number of devices to
prevent the keys from being used as device identifiers. One way of meeting this
requirement is to share the same attestation key unless at least 100,000 units of a given
SKU are produced. If more than 100,000 units of an SKU are produced, a different key
MAY be used for each 100,000 units.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which

requires a keystore backed by an isolated execution environment.
When Handheld device implementations support a secure lock screen, they:

e [9.11 /H-1-1] MUST allow the user to choose the shortest sleep timeout, that is a
transition time from the unlocked to the locked state, as 15 seconds or less.

e [9.11 /H-1-2] MUST provide user affordance to hide notifications and disable all forms of
authentication except for the primary authentication described in 9.11.1 Secure Lock
Screen . The AOSP meets the requirement as lockdown mode.

If Handheld device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5 /H-2-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Handheld device implementations include multiple users and declare the android.hardware.telephony

feature flag, they:

e [9.5 /H-3-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.2.6. Developer Tools and Options Compatibility

Handheld device implementations (* Not applicable for Tablet):

e [ 6.1 /H-0-1]* MUST support the shell commandcmd testharness .

Handheld device implementations (* Not applicable for Tablet):

e Perfetto

o [ 6.1 /H-0-2]* MUST expose a /system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .

o [ 6.1 /H-0-3]* The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /H-0-4]* The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /H-0-5]* MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .

2.3. Television Requirements

An Android Television device refers to an Android device implementation that is an entertainment

android
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interface for consuming digital media, movies, games, apps, and/or live TV for users sitting about ten
feet away (a “lean back” or “10-foot user interface”).

Android device implementations are classified as a Television if they meet all the following criteria:

e Have provided a mechanism to remotely control the rendered user interface on the
display that might sit ten feet away from the user.

e Have an embedded screen display with the diagonal length larger than 24 inches OR
include a video output port, such as VGA, HDMI, DisplayPort, or a wireless port for display.

The additional requirements in the rest of this section are specific to Android Television device
implementations.

2.3.1. Hardware

Television device implementations:

[7.2 .2/T-0-1] MUST support D-pad .

[ 7.2 .3/T-0-1] MUST provide the Home and Back functions.

[ 7.2 .3/T-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE_BACK ) to the foreground application.

[7.2 .6.1/T-0-1] MUST include support for game controllers and declare the
android.hardware.gamepad feature flag.

[ 7.2 .7/T] SHOULD provide a remote control from which users can accessnon-touch
navigation and core navigation keys inputs.

If Television device implementations include a 3-axis gyroscope, they:

e [7.3.4/T-1-1] MUST be able to report events up to a frequency of at least 100 Hz.
e [7.3.4/T-1-2] MUST be capable of measuring orientation changes up to 1000 degrees per
second.

Television device implementations:

e [7.4 .3/T-0-1] MUST support Bluetooth and Bluetooth LE.
e [7.6.1/T-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

If Television device implementations include a USB port that supports host mode, they:

e [7.5.3/T-1-1] MUST include support for an external camera that connects through this
USB port but is not necessarily always connected.

If TV device implementations are 32-bit:

e [7.6.1/T-1-1] The memory available to the kernel and userspace MUST be at least
896MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens

If TV device implementations are 64-bit:

e [7.6 .1/T-2-1] The memory available to the kernel and userspace MUST be at least
1280MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

Television device implementations:

e [7.8.1/T] SHOULD include a microphone.
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e [7.8.2/T-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.3.2. Multimedia

Television device implementations MUST support the following audio encoding and decoding
formats and make them available to third-party applications:

1 /T-0-1] MPEG-4 AAC Profile (AAC LC)
1 /T-0-2] MPEG-4 HE AAC Profile (AAC+)
1 /T-0-3] AAC ELD (enhanced low delay AAC)

(J'I‘(J'I

ol
ol
ol

(8]

Television device implementations MUST support the following video encoding formats and make
them available to third-party applications:

[5.2 /T-0-1] H.264
e [5.2/T-0-2] VP8

Television device implementations:

e [5.2.2/T-SR] Are STRONGLY RECOMMENDED to support H.264 encoding of 720p and
1080p resolution videos at 30 frames per second.

Television device implementations MUST support the following video decoding formats and make
them available to third-party applications:

[ 5.3.3/T-0-1] MPEG-4 SP
[5.3.4/T-0-2] H.264 AVC
[5.3.5/T-0-3] H.265 HEVC
[5.3.6 /T-0-4] VP8

[5.3.7 /T-0-5] VP9

[ 5.3.1 /T-0-6] MPEG-2

Television device implementations MUST support MPEG-2 decoding, as detailed in Section 5.3.1, at
standard video frame rates and resolutions up to and including:

e [5.3.1/T-1-1]1 HD 1080p at 59.94 frames per second with Main Profile High Level.

e [5.3.1/T-1-2] HD 1080i at 59.94 frames per second with Main Profile High Level. They
MUST deinterlace interlaced MPEG-2 video and make it available to third-party
applications.

Television device implementations MUST support H.264 decoding, as detailed in Section 5.3.4, at
standard video frame rates and resolutions up to and including:

e [5.3.4/T-1-1] HD 1080p at 60 frames per second with Baseline Profile
e [5.3.4/T-1-2] HD 1080p at 60 frames per second with Main Profile
e [5.3.4/T-1-3] HD 1080p at 60 frames per second with High Profile Level 4.2

Television device implementations with H.265 hardware decoders MUST support H.265 decoding, as
detailed in Section 5.3.5, at standard video frame rates and resolutions up to and including:

e [5.3.5/T-1-1] HD 1080p at 60 frames per second with Main Profile Level 4.1

If Television device implementations with H.265 hardware decoders support H.265 decoding and the
UHD decoding profile, they:

e [5.3.5/T-2-1] MUST support the UHD decoding profile at 60 frames per second with
Main10 Level 5 Main Tier profile.

Television device implementations MUST support VP8 decoding, as detailed in Section 5.3.6, at
standard video frame rates and resolutions up to and including:

e [5.3.6 /T-1-1] HD 1080p at 60 frames per second decoding profile

Television device implementations with VP9 hardware decoders MUST support VP9 decoding, as
detailed in Section 5.3.7, at standard video frame rates and resolutions up to and including:
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e [5.3.7/T-1-1]1 HD 1080p at 60 frames per second with profile 0 (8 bit color depth)

If Television device implementations with VP9 hardware decoders support VP9 decoding and the
UHD decoding profile, they:

e [5.3.7 /T-2-1] MUST support the UHD decoding profile at 60 frames per second with
profile 0 (8 bit color depth).

e [5.3.7 /T-2-1] Are STRONGLY RECOMMENDED to support the UHD decoding profile at 60
frames per second with profile 2 (10 bit color depth).

Television device implementations:

e [5.5/T-0-1] MUST include support for system Master Volume and digital audio output
volume attenuation on supported outputs, except for compressed audio passthrough
output (where no audio decoding is done on the device).

If Television device implementations do not have a built in display, but instead support an external
display connected via HDMI, they:

e [ 5.8 /T-0-1] MUST set the HDMI output mode to select the maximum resolution that can
be supported with either a 50Hz or 60Hz refresh rate.

e [5.8 /T-SR] Are STRONGLY RECOMMENDED to provide a user configurable HDMI refresh
rate selector.

e [5.8] SHOULD set the HDMI output mode refresh rate to either 50Hz or 60Hz, depending
on the video refresh rate for the region the device is sold in.

If Television device implementations do not have a built in display, but instead support an external
display connected via HDMI, they:

e [5.8 /T-1-1] MUST support HDCP 2.2.

If Television device implementations do not support UHD decoding, but instead support an external
display connected via HDMI, they:

e [5.8 /T-2-1] MUST support HDCP 1.4

2.3.3. Software

Television device implementations:

e [ 3 /T-0-1] MUST declare the features android.software.leanback and
android.hardware.type.television .

e [3.4.1/T-0-1] MUST provide a complete implementation of the android.webkit. Webview
API.

If Android Television device implementations support a lock screen,they:

e [3.8.10/T-1-1] MUST display the Lock screen Notifications including the Media
Notification Template.

Television device implementations:

e [3.8.14/T-SR] Are STRONGLY RECOMMENDED to support picture-in-picture (PIP) mode
multi-window.

e [3.10 /T-0-1] MUST support third-party accessibility services.

e [3.10 /T-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

If Television device implementations report the feature android.hardware.audio.output , they:

e [3.11 /T-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.
e [3.11/T-1-1] MUST support installation of third-party TTS engines.
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Television device implementations:

e [3.12 /T-0-1] MUST support TV Input Framework.

2.3.4. Performance and Power

e [8.1/T-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render
frames MUST NOT happen more often than 5 frames in a second, and SHOULD be below
1 frames in a second.

[ 8.2 /T-0-1] MUST ensure a sequential write performance of at least 5MB/s.
[ 8.2 /T-0-2] MUST ensure a random write performance of at least 0.5MB/s.

[ 8.2 /T-0-3] MUST ensure a sequential read performance of at least 15MB/s.
[ 8.2 /T-0-4] MUST ensure a random read performance of at least 3.5MB/s.

If Television device implementations include features to improve device power management that are
included in AOSP or extend the features that are included in AOSP, they:

e [8.3/T-1-1] MUST provide user affordance to enable and disable the battery saver
feature.

If Television device implementations do not have a battery they:

e [8.3 /T-1-2] MUST register the device as a batteryless device as described inSupporting
Batteryless Devices .

If Television device implementations have a battery they:

e [8.3 /T-1-3] MUST provide user affordance to display all apps that are exempted from
App Standby and Doze power-saving modes.

Television device implementations:

e [8.4 /T-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.

[ 8.4 /T-0-2] MUST report all power consumption values in milliampere hours (mAh).

[ 8.4 /T-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel module
implementation.

[ 8.4 /T] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

[ 8.4 /T-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

2.3.5. Security Model
Television device implementations:

e [9.11/T-0-1] MUST back up the keystore implementation with an isolated execution
environment.

e [9.11 /T-0-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.

e [9.11 /T-0-3] MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.
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e [9.11 /T-0-4] MUST support key attestation where the attestation signing key is protected
by secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the
same attestation key unless at least 100,000 units of a given SKU are produced. If more
than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.

Note that if a device implementation is already launched on an earlier Android version, such a device

is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

If Television device implementations support a secure lock screen, they:

e [9.11/T-1-1] MUST allow the user to choose the Sleep timeout for transition from the
unlocked to the locked state, with a minimum allowable timeout up to 15 seconds or less.

If Television device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5 /T-2-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Television device implementations include multiple users and declare the android.hardware.telephony

feature flag, they:

e [9.5/T-3-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.3.6. Developer Tools and Options Compatibility

Television device implementations:

e Perfetto

o [ 6.1 /T-0-1] MUST expose a /system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .

o [6.1/T-0-2] The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /T-0-3] The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .

o [6.1/T-0-4] MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .

2.4. Watch Requirements

An Android Watch device refers to an Android device implementation intended to be worn on the
body, perhaps on the wrist.

Android device implementations are classified as a Watch if they meet all the following criteria:

e Have a screen with the physical diagonal length in the range from 1.1 to 2.5 inches.
e Have a mechanism provided to be worn on the body.

The additional requirements in the rest of this section are specific to Android Watch device
implementations.

2.4.1. Hardware
Watch device implementations:

e [7.1.1.1/W-0-1] MUST have a screen with the physical diagonal size in the range from 1.1
to 2.5 inches.
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e [ 7.2 .3/W-0-1] MUST have the Home function available to the user, and the Back function
except for when it is in U MODE_TYPE_WATCH .

e [7.2 .4/W-0-1] MUST support touchscreen input.
e [7.3.1/W-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Watch device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag, they:

e [7.3.3/W-1-1] MUST report GNSS measurements, as soon as they are found, even if a
location calculated from GPS/GNSS is not yet reported.

e [7.3.3/W-1-2] MUST report GNSS pseudoranges and pseudorange rates, that, in open-
sky conditions after determining the location, while stationary or moving with less than
0.2 meter per second squared of acceleration, are sufficient to calculate position within
20 meters, and speed within 0.2 meters per second, at least 95% of the time.

If Watch device implementations include a 3-axis gyroscope, they:

e [7.3.4/W-2-1] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

Watch device implementations:

e [ 7.4 .3/W-0-1] MUST support Bluetooth.

e [7.6.1/W-0-1] MUST have at least 1 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

[ 7.6 .1/W-0-2] MUST have at least 416 MB memory available to the kernel and userspace.
[ 7.8 .1/W-0-1] MUST include a microphone.
[ 7.8 .2/W] MAY but SHOULD NOT have audio output.

2.4.2. Multimedia
No additional requirements.
2.4.3. Software

Watch device implementations:

e [ 3 /W-0-1] MUST declare the feature android.hardware.type.watch .
e [ 3 /W-0-2] MUST support uiMode = Ul_MODE_TYPE_WATCH .

Watch device implementations:

e [ 3.8 .4/W-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

Watch device implementations that declare the android.hardware.audio.output feature flag:

e [3.10 /W-1-1] MUST support third-party accessibility services.

e [3.10 /W-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the
device comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preinstalled Text-to-speech engine) accessibility services as
provided in the talkback open source project .

e [3.11 /W-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

e [3.11 /W-0-1] MUST support installation of third-party TTS engines.

2.4.4. Performance and Power

If Watch device implementations include features to improve device power management that are
included in AOSP or extend the features that are included in AOSP, they:

e [ 8.3 /W-SR] Are STRONGLY RECOMMENDED to provide user affordance to display all
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apps that are exempted from App Standby and Doze power-saving modes.

e [8.3 /W-SR] Are STRONGLY RECOMMENDED to provide user affordance to enable and
disable the battery saver feature.

Watch device implementations:

e [8.4 /W-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.

[ 8.4 /W-0-2] MUST report all power consumption values in milliampere hours (mAh).

[ 8.4 /W-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel module
implementation.

[ 8.4 /W-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

[ 8.4 /W] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.

2.4.5. Security Model

If Watch device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5 /W-1-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Watch device implementations include multiple users and declare the android.hardware.telephony
feature flag, they:

e [9.5 /W-2-1] MUST NOT support restricted profiles but MUST align with the AOSP

implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

2.5. Automotive Requirements

Android Automotive implementation refers to a vehicle head unit running Android as an operating
system for part or all of the system and/or infotainment functionality.

Android device implementations are classified as an Automotive if they declare the feature
android.hardware.type.automotive or meet all the following criteria.

o Are embedded as part of, or pluggable to, an automotive vehicle.
e Are using a screen in the driver's seat row as the primary display.

The additional requirements in the rest of this section are specific to Android Automotive device
implementations.

2.5.1. Hardware

Automotive device implementations:

[7.1.1.1/A-0-1] MUST have a screen at least 6 inches in physical diagonal size.
[7.1.1.1/A-0-2] MUST have a screen size layout of at least 750 dp x 480 dp.

[ 7.2 .3/A-0-1] MUST provide the Home function and MAY provide Back and Recent
functions.

[ 7.2 .3/A-0-2] MUST send both the normal and long press event of the Back function (
KEYCODE BACK ) to the foreground application.

[ 7.3 /A-0-1] MUST implement and report GEAR_SELECTION , NIGHT_MODE ,
PERF_VEHICLE SPEED and PARKING BRAKE ON.

[ 7.3 /A-0-2] The value of the NIGHT _MODE flag MUST be consistent with dashboard
day/night mode and SHOULD be based on ambient light sensor input. The underlying
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ambient light sensor MAY be the same as Photometer .

e [7.3 /A-0-3] MUST provide sensor additional info field TYPE_SENSOR_PLACEMENT as
part of SensorAdditionallnfo for every sensor provided.

e [7.3 /A-0-1] MAY dead reckon Location by fusing GPS/GNSS with additional sensors. If
Location is dead reckoned, itis STRONGLY RECOMMENDED to implement and report the
corresponding Sensor types and/or Vehicle Property IDs used.

e [7.3 /A-0-2] The Location requested via LocationManager#requestLocationUpdates()
MUST NOT be map matched.

If Automotive device implementations include a 3-axis accelerometer, they:

e [7.3.1/A-1-1] MUST be able to report events up to a frequency of at least 100 Hz.
e [7.3.1/A-1-2] MUST comply with the Android car sensor coordinate system .

If Automotive device implementations include a 3-axis gyroscope, they:

[ 7.3 .4/A-2-1] MUST be able to report events up to a frequency of at least 100 Hz.
[ 7.3 .4/A-2-2] MUST also implement the TYPE_GYROSCOPE_UNCALIBRATED sensor.

[ 7.3 .4/A-2-3] MUST be capable of measuring orientation changes up to 250 degrees per
second.

[ 7.3 .4/A-SR] Are STRONGLY RECOMMENDED to configure the gyroscope’s measurement
range to +/-250dps in order to maximize the resolution possible

Automotive device implementations:

[ 7.4 .3/A-0-1] MUST support Bluetooth and SHOULD support Bluetooth LE.
[ 7.4 .3/A-0-2] Android Automotive implementations MUST support the following
Bluetooth profiles:

o Phone calling over Hands-Free Profile (HFP).

o Media playback over Audio Distribution Profile (A2DP).

o Media playback control over Remote Control Profile (AVRCP).

o Contact sharing using the Phone Book Access Profile (PBAP).

[ 7.4 .3/A-SR] Are STRONGLY RECOMMENDED to support Message Access Profile (MAP).

[ 7.4 .5/A] SHOULD include support for cellular network-based data connectivity.

[ 7.4 .5/A] MAY use the System API NetworkCapabilities#NET _CAPABILITY_OEM_PAID
constant for networks that are available to system apps.

An exterior view camera is a camera that images scenes outside of the device implementation, like a
dashcam.

Automotive device implementations:

e SHOULD include one or more exterior view cameras.

If Automotive device implementations include an exterior view camera, for such a camera, they:

e [7.5/A-1-1] MUST NOT have exterior view cameras accessible via the Android Camera
APls , unless they comply with camera core requirements .

e [7.5/A-SR] Are STRONGLY RECOMMENDED not to rotate or horizontally mirror the
camera preview.

e [7.5.5/A-SR] Are STRONGLY RECOMMENDED to be oriented so that the long dimension
of the camera aligns with the horizon.

e [ 7.5 /A-SR] Are STRONGLY RECOMMENDED to have a resolution of at least 1.3
megapixels.

e SHOULD have either fixed-focus or EDOF (extended depth of field) hardware.

e MAY have either hardware auto-focus or software auto-focus implemented in the camera
driver.

Automotive device implementations:

e [7.6.1/A-0-1] MUST have at least 4 GB of non-volatile storage available for application
private data (a.k.a. "/data" partition).

e [7.6 .1/A] SHOULD format the data partition to offer improved performance and longevity
on flash storage, for example using 2fs file-system.
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If Automotive device implementations provide shared external storage via a portion of the internal
non-removable storage, they:

e [7.6.1/A-SR] Are STRONGLY RECOMMENDED to reduce 1/0 overhead on operations
performed on the external storage, for example by using SDCardFS .

If Automotive device implementations are 32-bit:

e [7.6.1/A-1-1] The memory available to the kernel and userspace MUST be at least
512MB if any of the following densities are used:
o 280dpi or lower on small/normal screens
o |dpi or lower on extra large screens
o mdpi or lower on large screens

e [7.6.1/A-1-2] The memory available to the kernel and userspace MUST be at least
608MB if any of the following densities are used:
o xhdpi or higher on small/normal screens
o hdpi or higher on large screens
o mdpi or higher on extra large screens

e [7.6.1/A-1-3] The memory available to the kernel and userspace MUST be at least
896MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens
e [7.6 .1/A-1-4] The memory available to the kernel and userspace MUST be at least
1344MB if any of the following densities are used:
o 560dpi or higher on small/normal screens
o 400dpi or higher on large screens
o xhdpi or higher on extra large screens

If Automotive device implementations are 64-bit:

e [7.6.1/A-2-1] The memory available to the kernel and userspace MUST be at least
816MB if any of the following densities are used:
o 280dpi or lower on small/normal screens
o Idpi or lower on extra large screens
o mdpi or lower on large screens
e [7.6.1/A-2-2] The memory available to the kernel and userspace MUST be at least
944MB if any of the following densities are used:
o xhdpi or higher on small/normal screens
o hdpi or higher on large screens
o mdpi or higher on extra large screens
e [ 7.6 .1/A-2-3] The memory available to the kernel and userspace MUST be at least
1280MB if any of the following densities are used:
o 400dpi or higher on small/normal screens
o xhdpi or higher on large screens
o tvdpi or higher on extra large screens
e [ 7.6 .1/A-2-4] The memory available to the kernel and userspace MUST be at least
1824MB if any of the following densities are used:
o 560dpi or higher on small/normal screens
o 400dpi or higher on large screens
o xhdpi or higher on extra large screens

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.

Automotive device implementations:

e [7.7 .1/A] SHOULD include a USB port supporting peripheral mode.

Automotive device implementations:
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e [ 7.8 .1/A-0-1] MUST include a microphone.

Automotive device implementations:

e [7.8.2/A-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.5.2. Multimedia

Automotive device implementations MUST support the following audio encoding and decoding
formats and make them available to third-party applications:

e [5.1 /A-0-1] MPEG-4 AAC Profile (AAC LC)
e [5.1 /A-0-2] MPEG-4 HE AAC Profile (AAC+)
e [5.1/A-0-3] AAC ELD (enhanced low delay AAC)

Automotive device implementations MUST support the following video encoding formats and make

them available to third-party applications:

(3

.2 /A-0-1] H.264 AVC
2 /A-0-2] VP8

[
[

(5

Automotive device implementations MUST support the following video decoding formats and make

them available to third-party applications:

5.3 /A-0-1] H.264 AVC

o[

e [5.3 /A-0-2] MPEG-4 SP
e [5.3/A-0-3] VP8
ol

5.3 /A-0-4] VP9

Automotive device implementations are STRONGLY RECOMMENDED to support the following video

decoding:

e [5.3/A-SR] H.265 HEVC
2.5.3. Software
Automotive device implementations:

e [ 3 /A-0-1] MUST declare the feature android.hardware.type.automotive .
[ 3 /A-0-2] MUST support uiMode = Ul MODE_TYPE_CAR .

[ 3 /A-0-3] MUST support all public APIs in theandroid.car.* namespace.

[ 3.2 .1/A-0-1] MUST support and enforce all permissions constants as documented by
the Automotive Permission reference page.

[ 3.4 .1/A-0-1] MUST provide a complete implementation of the android.webkit. Webview
API.

[ 3.8 .3/A-0-1] MUST display notifications that use the Notification.CarExtender APl when
requested by third-party applications.

[ 3.8 .4/A-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

If Automotive device implementations include a push-to-talk button, they:

e [3.8.4/A-1-1] MUST use a short press of the push-to-talk button as the designated
interaction to launch the user-selected assist app, in other words the app that implements
VoicelnteractionService .

Automotive device implementations:

e [3.8.3.1 /A-0-1] MUST correctly render resources as described in the Notifications on
Automotive OS SDK documentation.

e [3.8.3.1/A-0-2] MUST display PLAY and MUTE for notification actions in the place of
those provided through Notification.Builder.addAction()

e [3.8.3.1 /A] SHOULD restrict the use of rich management tasks such as per-notification-

android
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channel controls. MAY use Ul affordance per application to reduce controls.

Automotive device implementations:

e [3.14 /A-0-1] MUST include a Ul framework to support third-party apps using the media

APlIs as described in section 3.14 .

[ 3.14 /A-0-2] MUST allow the user to safely interact with Media Applications while
driving.

[3.14 /A-0-3] MUST support the CAR_INTENT_ACTION_MEDIA_TEMPLATE implicit
Intent action with the CAR_EXTRA_ MEDIA PACKAGE extra.

[ 3.14 /A-0-4] MUST provide an affordance to navigate into a Media Application’s
preference activity , but MUST only enable it when Car UX Restrictions are not in effect.

[ 3.14 /A-0-5] MUST display error messages set by Media Applications, and MUST support
the optional extras ERROR_RESOLUTION_ACTION_LABEL and

ERROR RESOLUTION ACTION INTENT.

[ 3.14 /A-0-6] MUST support an in-app search affordance for apps that support searching.
[3.14 /A-0-7] MUST respect CONTENT _STYLE BROWSABLE_HINT and
CONTENT_STYLE PLAYABLE HINT definitions when displaying the MediaBrowser
hierarchy.

If Automotive device implementations include a default launcher app, they:

[ 3.14 /A-1-1] MUST include media services and open them with the
CAR_INTENT_ACTION_MEDIA_TEMPLATE intent.

Automotive device implementations:

[ 3.8 /A] MAY restrict the application requests to limit the ability to enter a full screen
mode as described in immersive documentation .

[ 3.8 /A] MAY keep the status bar and the navigation bar visible at all times.

[ 3.8 /A] MAY restrict the application requests to limit the ability to change the colors
behind the system Ul elements, to ensure those elements are clearly visible at all times,
as described in the WindowManager.LayoutParams#FLAG _TRANSLUCENT STATUS and
WindowManager.LayoutParams#FLAG_TRANSLUCENT NAVIGATION .

2.5.4. Performance and Power

Automotive device implementations:

[ 8.2 /A-0-1] MUST report the number of bytes read and written to non-volatile storage per
each process's UID so the stats are available to developers through System API
android.car.storagemonitoring.CarStorageMonitoringManager . The Android Open Source
Project meets the requirement through the uid_sys_stats kernel module.
[ 8.3 /A-1-3] MUST enter Garage Mode at least once before the car is powered down.
[ 8.3 /A-1-4] MUST be in Garage Mode for at least 15 minutes unless:

o The battery is drained.

o No idle jobs are scheduled.

o The driver exits Garage Mode.
[ 8.4 /A-0-1] MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery drain
caused by the components over time as documented in the Android Open Source Project
site.
[ 8.4 /A-0-2] MUST report all power consumption values in milliampere hours (mAh).
[ 8.4 /A-0-3] MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid cputime kernel module
implementation.
[ 8.4 /A] SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.
[ 8.4 /A-0-4] MUST make this power usage available via the adb shell dumpsys batterystats
shell command to the app developer.

2.5.5. Security Model

If Automotive device implementations support multiple users, they:

android
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e [9.5/A-1-1] MUST NOT allow users to interact with nor switch into the Headless System
User , except for device provisioning .
e [9.5/A-1-2] MUST switch into a Secondary User before BOOT_COMPLETED .

e [9.5 /A-1-3] MUST support the ability to create aGuest User even when the maximum
number of Users on a device has been reached.

Automotive device implementations:

e [9.11 /A-0-1] MUST back up the keystore implementation with an isolated execution
environment.

e [9.11 /A-0-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.

e [9.11 /A-0-3] MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

e [9.11 /A-0-4] MUST support key attestation where the attestation signing key is protected
by secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the
same attestation key unless at least 100,000 units of a given SKU are produced. If more
than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

If Automotive device implementations support a secure lock screen, they:

e [9.11 /A-1-1] MUST allow the user to choose the Sleep timeout for transition from the
unlocked to the locked state, with a minimum allowable timeout up to 15 seconds or less.

Automotive device implementations:

e [9.14 /A-0-1] MUST gatekeep messages from Android framework vehicle subsystems,
e.g., whitelisting permitted message types and message sources.

e [9.14 /A-0-2] MUST watchdog against denial of service attacks from the Android
framework or third-party apps. This guards against malicious software flooding the
vehicle network with traffic, which may lead to malfunctioning vehicle subsystems.

2.5.6. Developer Tools and Options Compatibility
Automotive device implementations:

o Perfetto

o [ 6.1 /A-0-1] MUST expose a /system/bin/perfetto binary to the shell user which
cmdline complies with the perfetto documentation .

o [ 6.1 /A-0-2] The perfetto binary MUST accept as input a protobuf config that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /A-0-3] The perfetto binary MUST write as output a protobuf trace that
complies with the schema defined in the perfetto documentation .

o [ 6.1 /A-0-4] MUST provide, through the perfetto binary, at least the data
sources described in the perfetto documentation .

2.6. Tablet Requirements
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An Android Tablet device refers to an Android device implementation that meets all the following
criteria:

e Typically used by holding in both hands.
e Does not have a clamshell or convertible configuration.

e Any physical keyboard implementation used with the device MUST connect by means of a
standard connection.

Has a power source that provides mobility, such as a battery.
e Has a physical diagonal screen size in the range of 7 to 18 inches.

Tablet device implementations have similar requirements to handheld device implementations. The
exceptions are indicated by an * in that section and noted for reference in this section.

2.6.1. Hardware

Screen Size

e [7.1.1.1/Tab-0-1] MUST have a screen in the range of 7 to 18 inches.

Gyroscope
If Tablet device implementations include a 3-axis gyroscope, they:

e [7.3 .4/Tab-1-1] MUST be capable of measuring orientation changes up to 1000 degrees
per second.

Minimum Memory and Storage (Section 7.6.1)

The screen densities listed for small/normal screens in the handheld requirements are not applicable
to tablets.

USB peripheral mode (Section 7.7.1)
If tablet device implementations include a USB port supporting peripheral mode, they:

e [7.7.1 /Tab] MAY implement the Android Open Accessory (AOA) API.

Virtual Reality Mode (Section 7.9.1)
Virtual Reality High Performance (Section 7.9.2)
Virtual reality requirements are not applicable to tablets.

2.6.2. Security Model

Keys and Credentials (Section 9.11)
Refer to Section [9.11].

If Tablet device implementations include multiple users and do not declare the
android.hardware.telephony feature flag, they:

e [9.5/T-1-1] MUST support restricted profiles, a feature that allows device owners to
manage additional users and their capabilities on the device. With restricted profiles,
device owners can quickly set up separate environments for additional users to work in,
with the ability to manage finer-grained restrictions in the apps that are available in those
environments.

If Tablet device implementations include multiple users and declare the android.hardware.telephony
feature flag, they:

e [9.5/T-2-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

3. Software

3.1. Managed API Compatibility

The managed Dalvik bytecode execution environment is the primary vehicle for Android applications.
The Android application programming interface (API) is the set of Android platform interfaces
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exposed to applications running in the managed runtime environment.
Device implementations:

e [C-0-1] MUST provide complete implementations, including all documented behaviors, of
any documented API exposed by the Android SDK or any API decorated with the
“@SystemApi” marker in the upstream Android source code.

e [C-0-2] MUST support/preserve all classes, methods, and associated elements marked by
the TestApi annotation (@TestApi).

e [C-0-3] MUST NOT omit any managed APlIs, alter API interfaces or signatures, deviate
from the documented behavior, or include no-ops, except where specifically allowed by
this Compatibility Definition.

e [C-0-4] MUST still keep the APIs present and behave in a reasonable way, even when
some hardware features for which Android includes APIs are omitted. See section 7 for
specific requirements for this scenario.

e [C-0-5] MUST NOT allow third-party apps to use non-SDK interfaces, which are defined as
methods and fields in the Java language packages that are in the boot classpath in AOSP,
and that do not form part of the public SDK. This includes APIs decorated with the @hide
annotation but not with a @SystemAPI, as described in the SDK documents and private
and package-private class members.

e [C-0-6] MUST ship with each and every non-SDK interface on the same restricted lists as
provided via the greylist, greylist-max-o , greylist-max-p , and blacklist flags in
prebuilts/runtime/appcompat/hiddenapi-flags.csv path for the appropriate API level branch in
the AOSP.

However they:

o MAY, if a hidden APl is absent or implemented differently on the device
implementation, move the hidden API into the blacklist or omit it from all
restricted lists (i.e. light-grey, dark-grey, black).

o MAY, if a hidden API does not already exist in the AOSP, add the hidden API to
any of the restricted lists (i.e. light-grey, dark-grey, black).

e [C-0-7] MUST support the signed config dynamic update mechanism to remove non-SDK
interfaces from a restricted list by embedding signed configuration in any APK, using the
existing public keys present in AOSP.

3.1.1. Android Extensions

Android includes the support of extending the managed APIs while keeping the same API level
version.

e [C-0-1] Android device implementations MUST preload the AOSP implementation of both
the shared library ExtShared and services ExtServices with versions higher than or equal to

the minimum versions allowed per each API level. For example, Android 7.0 device
implementations, running API level 24 MUST include at least version 1.

3.1.2. Android Library

Due to Apache HTTP client deprecation , device implementations:

e [C-0-1] MUST NOT place the org.apache.http.legacy library in the bootclasspath.
e [C-0-2] MUST add the org.apache.http.legacy library to the application classpath only when
the app satisfies one of the following conditions:
o Targets API level 28 or lower.
o Declares in its manifest that it needs the library by setting theandroid:name

attribute of <uses-library> to org.apache.http.legacy .
The AOSP implementation meets these requirements.

3.2. Soft API Compatibility

In addition to the managed APIs from section 3.1, Android also includes a significant runtime-only
“soft” API, in the form of such things as intents, permissions, and similar aspects of Android
applications that cannot be enforced at application compile time.

3.2.1. Permissions

Page 28 of 126


http://developer.android.com/reference/packages.html
https://developer.android.com/distribute/best-practices/develop/restrictions-non-sdk-interfaces
https://source.android.com/devices/tech/dalvik/signed-config
https://developer.android.com/about/versions/pie/android-9.0-changes-28#apache-p

e [C-0-1] Device implementers MUST support and enforce all permission constants as
documented by the Permission reference page . Note that section 9 lists additional

requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class that are intended to

describe the current device.

e [C-0-1] To provide consistent, meaningful values across device implementations, the table
below includes additional restrictions on the formats of these values to which device
implementations MUST conform.

Parameter

Details

VERSION.RELEASE

The version of the currently-executing Android system, in human-
readable format. This field MUST have one of the string values defined
in10.

VERSION.SDK

The version of the currently-executing Android system, in a format
accessible to third-party application code. For Android 10, this field
MUST have the integer value 10_INT.

VERSION.SDK_INT

The version of the currently-executing Android system, in a format
accessible to third-party application code. For Android 10, this field
MUST have the integer value 10_INT.

VERSION.INCREMENTAL

A value chosen by the device implementer designating the specific
build of the currently-executing Android system, in human-readable
format. This value MUST NOT be reused for different builds made
available to end users. A typical use of this field is to indicate which
build number or source-control change identifier was used to generate
the build. The value of this field MUST be encodable as printable 7-bit
ASCII and match the regular expression “A[* :\/~]+$".

BOARD

A value chosen by the device implementer identifying the specific
internal hardware used by the device, in human-readable format. A
possible use of this field is to indicate the specific revision of the board
powering the device. The value of this field MUST be encodable as 7-bit
ASCII and match the regular expression “*[a-zA-Z0-9_-]+$".

BRAND

A value reflecting the brand name associated with the device as known
to the end users. MUST be in human-readable format and SHOULD
represent the manufacturer of the device or the company brand under
which the device is marketed. The value of this field MUST be
encodable as 7-bit ASCII and match the regular expression “*[a-zA-Z0-
9_-]+$".

SUPPORTED_ABIS

The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native APl Compatibility .

SUPPORTED_32_BIT_ABIS

The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility .

SUPPORTED_64_BIT_ABIS

The name of the second instruction set (CPU type + ABI convention) of
native code. See section 3.3. Native AP| Compatibility .

The name of the instruction set (CPU type + ABI convention) of native

CPU_ABI code. See section 3.3. Native APl Compatibility .

CPU_ABI2 The name of the second instruction set (CPU type + ABI convention) of
native code. See section 3.3. Native APl Compatibility .
A value chosen by the device implementer containing the development
name or code name identifying the configuration of the hardware

DEVICE features and industrial design of the device. The value of this field

MUST be encodable as 7-bit ASCIl and match the regular expression
“Ma-zA-Z0-9_-]+$". This device name MUST NOT change during the
lifetime of the product.
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FINGERPRINT

A string that uniquely identifies this build. It SHOULD be reasonably

human-readable. It MUST follow this template:

$(BRAND)/$(PRODUCT)/
$(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)

For example:

acme/myproduct/
mydevice:10/LMYXX/3359:userdebug/test-keys

The fingerprint MUST NOT include whitespace characters. The value of
this field MUST be encodable as 7-bit ASCII.

HARDWARE

The name of the hardware (from the kernel command line or /proc). It
SHOULD be reasonably human-readable. The value of this field MUST
be encodable as 7-bit ASCII and match the regular expression “*[a-zA-
Z0-9_-]+$".

HOST

A string that uniquely identifies the host the build was built on, in
human-readable format. There are no requirements on the specific
format of this field, except that it MUST NOT be null or the empty string

).

An identifier chosen by the device implementer to refer to a specific
release, in human-readable format. This field can be the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “*[a-zA-Z0-9._-]+$".

MANUFACTURER

The trade name of the Original Equipment Manufacturer (OEM) of the
product. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (""). This field
MUST NOT change during the lifetime of the product.

MODEL

A value chosen by the device implementer containing the name of the
device as known to the end user. This SHOULD be the same name
under which the device is marketed and sold to end users. There are no
requirements on the specific format of this field, except that it MUST
NOT be null or the empty string (*"). This field MUST NOT change during
the lifetime of the product.

PRODUCT

A value chosen by the device implementer containing the development
name or code name of the specific product (SKU) that MUST be unique
within the same brand. MUST be human-readable, but is not necessarily
intended for view by end users. The value of this field MUST be
encodable as 7-bit ASCII and match the regular expression “*[a-zA-Z0-
9_-]+$". This product name MUST NOT change during the lifetime of the
product.

SERIAL

MUST return "UNKNOWN".

TAGS

A comma-separated list of tags chosen by the device implementer that
further distinguishes the build. The tags MUST be encodable as 7-bit
ASCII and match the regular expression “*[a-zA-Z0-9._-]+" and MUST
have one of the values corresponding to the three typical Android
platform signing configurations: release-keys, dev-keys, and test-keys.

TIME

A value representing the timestamp of when the build occurred.

TYPE

A value chosen by the device implementer specifying the runtime
configuration of the build. This field MUST have one of the values
corresponding to the three typical Android runtime configurations: user,
userdebug, or eng.

USER

A name or user ID of the user (or automated user) that generated the
build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

SECURITY_PATCH

A value indicating the security patch level of a build. It MUST signify
that the build is not in any way vulnerable to any of the issues described
up through the designated Android Public Security Bulletin. It MUST be
in the format [YYYY-MM-DD], matching a defined string documented in
the Android Public Security Bulletin or in the Android Security Advisory ,
for example "2015-11-01".
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BASE_OS

A value representing the FINGERPRINT parameter of the build that is
otherwise identical to this build except for the patches provided in the
Android Public Security Bulletin. It MUST report the correct value and if
such a build does not exist, report an empty string (").

BOOTLOADER

A value chosen by the device implementer identifying the specific
internal bootloader version used in the device, in human-readable
format. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “*[a-zA-Z0-9._-]+$".

getRadioVersion()

MUST (be or return) a value chosen by the device implementer
identifying the specific internal radio/modem version used in the
device, in human-readable format. If a device does not have any internal
radio/modem it MUST return NULL. The value of this field MUST be
encodable as 7-bit ASCII and match the regular expression “*[a-zA-Z0-
9._-]+8".

getSerial()

MUST (be or return) a hardware serial number, which MUST be
available and unique across devices with the same MODEL and
MANUFACTURER. The value of this field MUST be encodable as 7-bit
ASCII and match the regular expression “*a-zA-Z0-9._-]+$".

3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents

Android intents allow application components to request functionality from other Android
components. The Android upstream project includes a list of applications considered core Android
applications, which implements several intent patterns to perform common actions.

e [C-0-1] Device implementations MUST preload one or more applications or service
components with an intent handler, for all the public intent filter patterns defined by the
following core android applications in AOSP:

o Desk Clock
o Browser

o Calendar
o Contacts
o Gallery

o GlobalSearch

o Launcher
o Music
o Settings

3.2.3.2. Intent Resolution

[C-0-1] As Android is an extensible platform, device implementations MUST allow each

intent pattern referenced in section 3.2.3.1, except for Settings, to be overridden by third-
party applications. The upstream Android open source implementation allows this by

default.

e [C-0-2] Dvice implementers MUST NOT attach special privileges to system applications'
use of these intent patterns, or prevent third-party applications from binding to and
assuming control of these patterns. This prohibition specifically includes but is not
limited to disabling the “Chooser” user interface that allows the user to select between
multiple applications that all handle the same intent pattern.

e [C-0-3] Device implementations MUST provide a user interface for users to modify the
default activity for intents.

e However, device implementations MAY provide default activities for specific URI patterns
(e.g. http://play.google.com) when the default activity provides a more specific attribute
for the data URI. For example, an intent filter pattern specifying the data URI
“http://www.android.com” is more specific than the browser's core intent pattern for

“http://".

Android also includes a mechanism for third-party apps to declare an authoritative default app linking

behavior for certain types of web URI intents. When such authoritative declarations are defined in an
app's intent filter patterns, device implementations:

android

Page 31 of 126


https://developer.android.com/reference/android/os/Build.html#BOOTLOADER
https://developer.android.com/reference/android/os/Build.html#getRadioVersion()
https://developer.android.com/reference/android/os/Build.html#getSerial()
https://developer.android.com/training/app-links

[C-0-4] MUST attempt to validate any intent filters by performing the validation steps
defined in the Digital Asset Links specification as implemented by the Package Manager
in the upstream Android Open Source Project.

e [C-0-5] MUST attempt validation of the intent filters during the installation of the
application and set all successfully validated URI intent filters as default app handlers for
their URIs.

o MAY set specific URI intent filters as default app handlers for their URIs, if they are
successfully verified but other candidate URI filters fail verification. If a device
implementation does this, it MUST provide the user appropriate per-URI pattern overrides
in the settings menu.

e MUST provide the user with per-app App Links controls in Settings as follows:

o [C-0-6] The user MUST be able to override holistically the default app links
behavior for an app to be: always open, always ask, or never open, which
MUST apply to all candidate URI intent filters equally.

o [C-0-7] The user MUST be able to see a list of the candidate URI intent filters.

o The device implementation MAY provide the user with the ability to override
specific candidate URI intent filters that were successfully verified, on a per-
intent filter basis.

o [C-0-8] The device implementation MUST provide users with the ability to view
and override specific candidate URI intent filters if the device implementation
lets some candidate URI intent filters succeed verification while some others
can fail.

3.2.3.3. Intent Namespaces

e [C-0-1] Device implementations MUST NOT include any Android component that honors
any new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key
string in the android. or com.android. namespace.

e [C-0-2] Device implementers MUST NOT include any Android components that honor any
new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key string
in a package space belonging to another organization.

e [C-0-3] Device implementers MUST NOT alter or extend any of the intent patterns used by
the core apps listed in section 3.2.3.1 .

e Device implementations MAY include intent patterns using namespaces clearly and
obviously associated with their own organization. This prohibition is analogous to that
specified for Java language classes in section 3.6 .

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain intents to notify them of changes in
the hardware or software environment.

Device implementations:

e [C-0-1] MUST broadcast the public broadcast intents in response to appropriate system
events as described in the SDK documentation. Note that this requirement is not
conflicting with section 3.5 as the limitation for background applications are also
described in the SDK documentation.

3.2.3.5. Default App Settings

Android includes settings that provide users an easy way to select their default applications, for
example for Home screen or SMS.

Where it makes sense, device implementations MUST provide a similar settings menu and be
compatible with the intent filter pattern and APl methods described in the SDK documentation as
below.

If device implementations report android.software.home_screen , they:

e [C-1-1] MUST honor the android.settings. HOME _SETTINGS intent to show a default app
settings menu for Home Screen.

If device implementations report android.hardware.telephony , they:

e [C-2-1] MUST provide a settings menu that will call the
RoleManager.createRequestRolelntent(String) intent with RoleManager.ROLE SMS to show a
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dialog to change the default SMS application.

e [C-2-2] MUST honor the android.telecom.action.CHANGE DEFAULT_DIALER intent to show
a dialog to allow the user to change the default Phone application.
o MUST use the user-selected default Phone app's Ul for incoming and outgoing
calls except for emergency calls, which would use the preinstalled Phone app.

e [C-2-3] MUST honor the android.telecom.action.CHANGE_PHONE_ACCOUNTS intent to
provide user affordance to configure the ConnectionServices associated with the
PhoneAccounts , as well as a default PhoneAccount that the telecommunications service
provider will use to place outgoing calls. The AOSP implementation meets this
requirement by including a "Calling Accounts option" menu within the "Calls" settings
menu.

e [C-2-4] MUST allow android.telecom.CallRedirectionService for an app that holds the
android.app.role. CALL,._REDIRECTION role.

e [C-2-5] MUST provide the user affordance to choose an app that holds the
android.app.role. CALL._ REDIRECTION role.

If device implementations report android.hardware.nfc.hce , they:

e [C-3-1] MUST honor the android.settings.NFC_PAYMENT_SETTINGS intent to show a
default app settings menu for Tap and Pay.

If device implementations support the VoicelnteractionService and have more than one application
using this APl installed at a time, they:

e [C-4-1] MUST honor the android.settings. ACTION_VOICE _INPUT_SETTINGS intent to show
a default app settings menu for voice input and assist.

3.2.4. Activities on secondary/multiple displays
If device implementations allow launching normal Android Activities on more than one display, they:

e [C-1-1] MUST set the android.software.activities_on_secondary_displays feature flag.

e [C-1-2] MUST guarantee API compatibility similar to an activity running on the primary
display.

e [C-1-3] MUST land the new activity on the same display as the activity that launched it,
when the new activity is launched without specifying a target display via the
ActivityOptions.setLaunchDisplayld() API.

e [C-1-4] MUST destroy all activities, when a display with the Display. FLAG_PRIVATE flag is
removed.

e [C-1-5] MUST securely hide content on all screens when the device is locked with a secure
lock screen, unless the app opts in to show on top of lock screen using
Activity#setShowWhenLocked() API.

e SHOULD have android.content.res.Configuration which corresponds to that display in order to
be displayed, operate correctly, and maintain compatibility if an activity is launched on
secondary display.

If device implementations allow launching normal Android Activities on secondary displays and a
secondary display has the android.view.Display.FLAG_PRIVATE flag:

e [C-3-1] Only the owner of that display, system, and activities that are already on that
display MUST be able to launch to it. Everyone can launch to a display that has
android.view.Display.FLAG_PUBLIC flag.

3.3. Native API Compatibility

Native code compatibility is challenging. For this reason, device implementers are:

e [SR] STRONGLY RECOMMENDED to use the implementations of the libraries listed below
from the upstream Android Open Source Project.

3.3.1. Application Binary Interfaces

Managed Dalvik bytecode can call into native code provided in the application .apk file as an ELF .so
file compiled for the appropriate device hardware architecture. As native code is highly dependent on
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the underlying processor technology, Android defines a number of Application Binary Interfaces
(ABIs) in the Android NDK.

Device implementations:

[C-0-1] MUST be compatible with one or more defined ABIs and implement compatibility
with the Android NDK.

[C-0-2] MUST include support for code running in the managed environment to call into
native code, using the standard Java Native Interface (JNI) semantics.

[C-0-3] MUST be source-compatible (i.e. header-compatible) and binary-compatible (for
the ABI) with each required library in the list below.

[C-0-5] MUST accurately report the native Application Binary Interface (ABI) supported by
the device, via the android.os.Build. SUPPORTED ABIS,

android.os.Build. SUPPORTED 32 BIT ABIS, and

android.os.Build. SUPPORTED 64 BIT ABIS parameters, each a comma separated list of
ABIs ordered from the most to the least preferred one.

[C-0-6] MUST report, via the above parameters, a subset of the following list of ABIs and
MUST NOT report any ABI not on the list.

o armeabi

o armeabi-v7a

o arm64-v8a

o x86

o x86-64

o [C-0-7] MUST make all the following libraries, providing native APIs, available

to apps that include native code:
o libaaudio.so (AAudio native audio support)
o libamidi.so (native MIDI support, if feature android.software.midi is claimed as
described in Section 5.9)

o libandroid.so (native Android activity support)

o libc (C library)

o libcamera2ndk.so

o libdl (dynamic linker)

o libEGL.so (native OpenGL surface management)

o libGLESv1_CM.so (OpenGL ES 1.x)

o libGLESv2.so (OpenGL ES 2.0)

o libGLESv3.so (OpenGL ES 3.x)

o libicui18n.so

o libicuuc.so

o libjnigraphics.so

o liblog (Android logging)

o libmediandk.so (native media APIs support)

o libm (math library)

o libneuralnetworks.so (Neural Networks API)

o libOpenMAXAL.so (OpenMAX AL 1.0.1 support)

o libOpenSLES.so (OpenSL ES 1.0.1 audio support)

o libRS.so

o libstdc++ (Minimal support for C++)

o libvulkan.so (Vulkan)

o libz (Zlib compression)

o JNl interface

[C-0-8] MUST NOT add or remove the public functions for the native libraries listed above.
[C-0-9] MUST list additional non-AOSP libraries exposed directly to third-party apps in
/vendor/etc/public.libraries.txt .

[C-0-10] MUST NOT expose any other native libraries, implemented and provided in AOSP
as system libraries, to third-party apps targeting API level 24 or higher as they are
reserved.

[C-0-11] MUST export all the OpenGL ES 3.1 and Android Extension Pack function
symbols, as defined in the NDK, through the libGLESv3.so library. Note that while all the
symbols MUST be present, section 7.1.4.1 describes in more detail the requirements for
when the full implementation of each corresponding functions are expected.

[C-0-12] MUST export function symbols for the core Vulkan 1.0 function symbols, as well
as the VK KHR surface, VK_KHR android surface , VK_KHR swapchain,
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VK _KHR_ maintenancel , and VK_KHR get physical device properties2 extensions through
the libvulkan.so library. Note that while all the symbols MUST be present, section 7.1.4.2
describes in more detail the requirements for when the full implementation of each
corresponding functions are expected.

e SHOULD be built using the source code and header files available in the upstream Android
Open Source Project

Note that future releases of Android may introduce support for additional ABls.

3.3.2. 32-bit ARM Native Code Compatibility
If device implementations report the support of the armeabi ABI, they:

e [C-3-1] MUST also support armeabi-v7a and report its support, as armeabi is only for
backwards compatibility with older apps.

If device implementations report the support of the armeabi-v7a ABI, for apps using this ABI, they:

e [C-2-1] MUST include the following lines in /proc/cpuinfo , and SHOULD NOT alter the
values on the same device, even when they are read by other ABls.

o Features: , followed by a list of any optional ARMv7 CPU features supported by
the device.

o CPU architecture: , followed by an integer describing the device's highest
supported ARM architecture (e.g., "8" for ARMv8 devices).

e [C-2-2] MUST always keep the following operations available, even in the case where the
ABI is implemented on an ARMv8 architecture, either through native CPU support or
through software emulation:

o SWP and SWPB instructions.
o SETEND instruction.
o CP15ISB, CP15DSB, and CP15DMB barrier operations.

e [C-2-3] MUST include support for the Advanced SIMD (a.k.a. NEON) extension.

3.4. Web Compatibility
3.4.1. WebView Compatibility

If device implementations provide a complete implementation of the android.webkit. Webview API,
they:

e [C-1-1] MUST report android.software.webview .

e [C-1-2] MUST use the Chromium Project build from the upstream Android Open Source
Project on the Android 10 branch for the implementation of the android.webkit. WebView
API.

e [C-1-3] The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; Android $(VERSION); [$(MODEL)] [Build/$(BUILD)]; wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 $(CHROMIUM_VER) Mobile
Safari/537.36
o The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE.
o The $(MODEL) string MAY be empty, but if it is not empty it MUST have the
same value as android.os.Build. MODEL.
o "Build/$(BUILD)" MAY be omitted, but if it is present the $(BUILD) string MUST
be the same as the value for android.os.Build.ID.
o The value of the $(CHROMIUM_VER) string MUST be the version of Chromium
in the upstream Android Open Source Project.
o Device implementations MAY omit Mobile in the user agent string.

e The WebView component SHOULD include support for as many HTML5 features as
possible and if it supports the feature SHOULD conform to the HTMLS5 specification .

e [C-1-4] MUST render the provided content or remote URL content in a process that is
distinct from the application that instantiates the WebView. Specifically the separate
renderer process MUST hold lower privilege, run as a separate user ID, have no access to
the app's data directory, have no direct network access, and only have access to the
minimum-required system services over Binder. The AOSP implementation of WebView
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meets this requirement.

Note that if device implementations are 32-bit or declare the feature flag android.hardware.ram.low ,
they are exempted from C-1-3.

3.4.2. Browser Compatibility

If device implementations include a standalone Browser application for general web browsing, they:

[C-1-1] MUST support each of these APIs associated with HTML5:

o application cache/offline operation

o <video> tag

o geolocation
[C-1-2] MUST support the HTML5/W3C webstorage APl and SHOULD support the
HTML5/W3C IndexedDB API . Note that as the web development standards bodies are
transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a
required component in a future version of Android.
e MAY ship a custom user agent string in the standalone Browser application.
e SHOULD implement support for as much of HTMLS5 as possible on the standalone
Browser application (whether based on the upstream WebKit Browser application or a
third-party replacement).

However, If device implementations do not include a standalone Browser application, they:

e [C-2-1] MUST still support the public intent patterns as described insection 3.2.3.1 .

3.5. API Behavioral Compatibility

Device implementations:

e [C-0-9] MUST ensure that APl behavioral compatibility is applied for all installed apps
unless they are restricted as described in Section 3.5.1 .

e [C-0-10] MUST NOT implement the whitelisting approach that ensures API behavioral
compatibility only for apps that are selected by device implementers.

The behaviors of each of the API types (managed, soft, native, and web) MUST be consistent with the

preferred implementation of the upstream Android Open Source Project . Some specific areas of
compatibility are:

e [C-0-1] Devices MUST NOT change the behavior or semantics of a standard intent.

e [C-0-2] Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of
system component (such as Service, Activity, ContentProvider, etc.).

e [C-0-3] Devices MUST NOT change the semantics of a standard permission.

e Devices MUST NOT alter the limitations enforced on background applications. More
specifically, for background apps:

o [C-0-4] they MUST stop executing callbacks that are registered by the app to
receive outputs from the GnssMeasurement and GnssNavigationMessage .

o [C-0-5] they MUST rate-limit the frequency of updates that are provided to the
app through the LocationManager API class or the WifiManager.startScan()
method.

o [C-0-6] if the app is targeting API level 25 or higher, they MUST NOT allow to
register broadcast receivers for the implicit broadcasts of standard Android
intents in the app's manifest, unless the broadcast intent requires a "signature"
or "signatureOrSystem" protectionLevel permission or are on the exemption list .

o [C-0-7] if the app is targeting API level 25 or higher, they MUST stop the app's
background services, just as if the app had called the services' stopSelf()
method, unless the app is placed on a temporary whitelist to handle a task
that's visible to the user.

o [C-0-8] if the app is targeting API level 25 or higher, they MUST release the
wakelocks the app holds.

e [C-0-9] Devices MUST return the following security providers as the first seven array
values from the Security.getProviders() method, in the given order and with the given names
(as returned by Provider.getName() ) and classes, unless the app has modified the list via
insertProviderAt() or removeProvider() . Devices MAY return additional providers after the
specified list of providers below.
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. AndroidNSSP - android.security.net.config.NetworkSecurityConfigProvider
. AndroidOpenSSL - com.android.org.conscrypt.OpenSSLProvider
. CertPathProvider - sun.security.provider.CertPathProvider

. AndroidKeyStoreBCWorkaround -
android.security.keystore. AndroidKeyStoreBCWorkaroundProvider

A WN =

[3,]

. BC - com.android.org.bouncycastle.jce.provider.BouncyCastleProvider
. HarmonyJSSE - com.android.org.conscrypt.JSSEProvider
7. AndroidKeyStore - android.security.keystore. AndroidKeyStoreProvider

o

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of
the platform for behavioral compatibility, but not all. It is the responsibility of the implementer to
ensure behavioral compatibility with the Android Open Source Project. For this reason, device
implementers SHOULD use the source code available via the Android Open Source Project where
possible, rather than re-implement significant parts of the system.

3.5.1. Background Restriction

If device implementations implement the app restrictions that are included in AOSP or extend the app
restrictions, they:

[C-1-1] MUST provide user affordance where the user can see the list of restricted apps.

[C-1-2] MUST provide user affordance to turn on / off the restrictions on each app.

[C-1-3] MUST not automatically apply restrictions without evidence of poor system health

behavior, but MAY apply the restrictions on apps upon detection of poor system health

behavior like stuck wakelocks, long running services, and other criteria. The criteria MAY

be determined by device implementers but MUST be related to the app’s impact on the

system health. Other criteria that are not purely related to the system health, such as the

app’s lack of popularity in the market, MUST NOT be used as criteria.

e [C-1-4] MUST not automatically apply app restrictions for apps when a user has turned off
app restrictions manually, and MAY suggest the user to apply app restrictions.

e [C-1-5] MUST inform users if app restrictions are applied to an app automatically.

e [C-1-6] MUST return true for ActivityManager.isBackgroundRestricted() when the restricted
app calls this API.

e [C-1-7] MUST NOT restrict the top foreground app that is explicitly used by the user.

e [C-1-8] MUST suspend restrictions on an app that becomes the top foreground application
when the user explicitly starts to use the app that used to be restricted.

e [C-1-9] MUST report all app restriction events via UsageStats . If device implementations

extend the app restrictions that are implemented in AOSP, MUST follow the

implementation described in this document .

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming
language. To ensure compatibility with third-party applications, device implementers MUST NOT
make any prohibited modifications (see below) to these package namespaces:

e java.*

e javax.*

® sun.*

e android.*

e androidx.*

e com.android.*

That is, they:

e [C-0-1] MUST NOT modify the publicly exposed APIs on the Android platform by changing
any method or class signatures, or by removing classes or class fields.

e [C-0-2] MUST NOT add any publicly exposed elements (such as classes or interfaces, or
fields or methods to existing classes or interfaces) or Test or System APIs to the APIs in
the above namespaces. A “publicly exposed element” is any construct that is not
decorated with the “@hide” marker as used in the upstream Android source code.

Device implementers MAY modify the underlying implementation of the APIs, but such modifications:
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e [C-0-3] MUST NOT impact the stated behavior and Java-language signature of any
publicly exposed APIs.
e [C-0-4] MUST NOT be advertised or otherwise exposed to developers.

However, device implementers MAY add custom APIs outside the standard Android namespace, but

the custom APIs:

e [C-0-5] MUST NOT be in a namespace owned by or referring to another organization. For
instance, device implementers MUST NOT add APlIs to the com.google.* or similar
namespace: only Google may do so. Similarly, Google MUST NOT add APIs to other
companies' namespaces.

e [C-0-6] MUST be packaged in an Android shared library so that only apps that explicitly

use them (via the <uses-library> mechanism) are affected by the increased memory usage

of such APIs.

If a device implementer proposes to improve one of the package namespaces above (such as by
adding useful new functionality to an existing API, or adding a new API), the implementer SHOULD
visit source.android.com and begin the process for contributing changes and code, according to the

information on that site.

Note that the restrictions above correspond to standard conventions for naming APIs in the Java
programming language; this section simply aims to reinforce those conventions and make them

binding through inclusion in this Compatibility Definition.

3.7. Runtime Compatibility

Device implementations:

specification and semantics .

[C-0-1] MUST support the full Dalvik Executable (DEX) format and Dalvik bytecode

e [C-0-2] MUST configure Dalvik runtimes to allocate memory in accordance with the
upstream Android platform, and as specified by the following table. (See section 7.1.1 for

screen size and screen density definitions.)

e SHOULD use Android RunTime (ART), the reference upstream implementation of the
Dalvik Executable Format, and the reference implementation’s package management

system.

e SHOULD run fuzz tests under various modes of execution and target architectures to
assure the stability of the runtime. Refer to JFuzz and DexFuzz in the Android Open
Source Project website.

Note that memory values specified below are considered minimum values and device

implementations MAY allocate more memory per application.

Screen Layout

Screen Density

Minimum Application Memory

120 dpi (Idpi)

140 dpi (140dpi)

160 dpi (mdpi)

Android Watch

32MB
180 dpi (180dpi)
200 dpi (200dpi)
213 dpi (tvdpi)
220 dpi (220dpi)
240 dpi (hdpi) 36MB
280 dpi (280dpi)
320 dpi (xhdpi)
360 dpi (360dpi) 48MB
400 dpi (400dpi) 56MB
420 dpi (420dpi) 64MB
480 dpi (xxhdpi) 88MB
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560 dpi (560dpi) 112MB
640 dpi (xxxhdpi) 154MB
120 dpi (Idpi)
140 dpi (140dpi) 32MB
160 dpi (mdpi)
180 dpi (180dpi)
200 dpi (200dpi)
213 dpi (tvdpi)
220 dpi (220dpi) 48MB
small/normal 240 dpi (hdpi)
280 dpi (280dpi)
320 dpi (xhdpi)
360 dpi (360dpi) SOMB
400 dpi (400dpi) 96MB
420 dpi (420dpi) 112MB
480 dpi (xxhdpi) 128MB
560 dpi (560dpi) 192MB
640 dpi (xxxhdpi) 256MB
120 dpi (Idpi) 32MB
140 dpi (140dpi) 48MB
160 dpi (mdpi)
180 dpi (180dpi)
200 dpi (200dpi)
213 dpi (tvdpi) 80MB
220 dpi (220dpi)
large 240 dpi (hdpi)
280 dpi (280dpi) 96MB
320 dpi (xhdpi) 128MB
360 dpi (360dpi) 160MB
400 dpi (400dpi) 192MB
420 dpi (420dpi) 228MB
480 dpi (xxhdpi) 256MB
560 dpi (560dpi) 384MB
640 dpi (xxxhdpi) 512MB
120 dpi (Idpi) 48MB
140 dpi (140dpi)
160 dpi (mdpi) SOMB
180 dpi (180dpi)
200 dpi (200dpi)
213 dpi (tvdpi) 96MB
220 dpi (220dpi)
240 dpi (hdpi)
xlarge 280 dpi (280dpi) 144MB
320 dpi (xhdpi) 192MB
360 dpi (360dpi) 240MB
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400 dpi (400dpi) 288MB
420 dpi (420dpi) 336MB
480 dpi (xxhdpi) 384MB
560 dpi (560dpi) 576MB
640 dpi (xxxhdpi) 768MB

3.8. User Interface Compatibility

3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third-party applications to

replace the device launcher (home screen).
If device implementations allow third-party applications to replace the device home screen, they:

e [C-1-1] MUST declare the platform feature android.software.home screen .

e [C-1-2] MUST return the AdaptivelconDrawable object when the third-party application use
<adaptive-icon> tag to provide their icon, and the PackageManager methods to retrieve icons
are called.

If device implementations include a default launcher that supports in-app pinning of shortcuts, they:

e [C-2-1] MUST report true for ShortcutManager.isRequestPinShortcutSupported() .
e [C-2-2] MUST have user affordance asking the user before adding a shortcut requested by
apps via the ShortcutManager.requestPinShortcut() APl method.

e [C-2-3] MUST support pinned shortcuts and dynamic and static shortcuts as documented
on the App Shortcuts page .

Conversely, if device implementations do not support in-app pinning of shortcuts, they:

e [C-3-1] MUST report false for ShortcutManager.isRequestPinShortcutSupported() .

If device implementations implement a default launcher that provides quick access to the additional

shortcuts provided by third-party apps through the ShortcutManager API, they:

e [C-4-1] MUST support all documented shortcut features (e.g. static and dynamic
shortcuts, pinning shortcuts) and fully implement the APIs of the ShortcutManager API
class.

If device implementations include a default launcher app that shows badges for the app icons, they:

e [C-5-1] MUST respect the NotificationChannel.setShowBadge() APl method. In other words,
show a visual affordance associated with the app icon if the value is set as true , and do
not show any app icon badging scheme when all of the app's notification channels have
set the value as false .

e MAY override the app icon badges with their proprietary badging scheme when third-party
applications indicate support of the proprietary badging scheme through the use of
proprietary APIs, but SHOULD use the resources and values provided through the
notification badges APIs described in the SDK, such as the Notification.Builder.setNumber()
and the Notification.Builder.setBadgelconType() API.

3.8.2. Widgets

Android supports third-party app widgets by defining a component type and corresponding API and

lifecycle that allows applications to expose an “AppWidget” to the end user.
If device implementations support third-party app widgets, they:

e [C-1-1] MUST declare support for platform feature android.software.app_widgets .

e [C-1-2] MUST include built-in support for AppWidgets and expose user interface
affordances to add, configure, view, and remove AppWidgets directly within the Launcher.

e [C-1-3] MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. See
the App Widget DesignGuidelines in the Android SDK documentation for details.

e MAY support application widgets on the lock screen.
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If device implementations support third-party app widgets and in-app pinning of shortcuts, they:

e [C-2-1] MUST report true for AppWidgetManager.html.isRequestPinAppWidgetSupported() .
e [C-2-2] MUST have user affordance asking the user before adding a shortcut requested by
apps via the AppWidgetManager.requestPinAppWidget() APl method.

3.8.3. Notifications

Android includes Notification and NotificationManager APIs that allow third-party app developers to
notify users of notable events and attract users' attention using the hardware components (e.g.
sound, vibration and light) and software features (e.g. notification shade, system bar) of the device.

3.8.3.1. Presentation of Notifications

If device implementations allow third-party apps to notify users of notable events, they:

e [C-1-1] MUST support notifications that use hardware features, as described in the SDK
documentation, and to the extent possible with the device implementation hardware. For
instance, if a device implementation includes a vibrator, it MUST correctly implement the
vibration APIs. If a device implementation lacks hardware, the corresponding APIs MUST
be implemented as no-ops. This behavior is further detailed in section 7 .

e [C-1-2] MUST correctly render all resources (icons, animation files, etc.) provided for in
the APIs, or in the Status/System Bar icon style guide , although they MAY provide an
alternative user experience for notifications than that provided by the reference Android
Open Source implementation.

e [C-1-3] MUST honor and implement properly the behaviors described for the APIs to
update, remove and group notifications.

e [C-1-4] MUST provide the full behavior of the NotificationChannel APl documented in the
SDK.

e [C-1-5] MUST provide a user affordance to block and modify a certain third-party app's
notification per each channel and app package level.

e [C-1-6] MUST also provide a user affordance to display deleted notification channels.

e [C-1-7] MUST correctly render all resources (images, stickers, icons, etc.) provided
through Notification.MessagingStyle alongside the notification text without additional
user interaction. For example, MUST show all resources including icons provided through
android.app.Person in a group conversation that is set through setGroupConversation .

e [C-SR] Are STRONGLY RECOMMENDED to automatically surface a user affordance to
block a certain third-party app's notification per each channel and app package level after
the user dismisses that notification multiple times.

e SHOULD support rich notifications.

e SHOULD present some higher priority notifications as heads-up notifications.

e SHOULD have a user affordance to snooze notifications.

e MAY only manage the visibility and timing of when third-party apps can notify users of
notable events to mitigate safety issues such as driver distraction.

If device implementations support rich notifications, they:

e [C-2-1] MUST use the exact resources as provided through the Notification.Style API class
and its subclasses for the presented resource elements.

e SHOULD present each and every resource element (e.g. icon, title and summary text)
defined in the Notification.Style API class and its subclasses.

If device implementations support heads-up notifications: they:

e [C-3-1] MUST use the heads-up notification view and resources as described in the
Notification.Builder API class when heads-up notifications are presented.

e [C-3-2] MUST display the actions provided through Notification.Builder.addAction() together
with the notification content without additional user interaction as described in the SDK .

3.8.3.2. Notification Listener Service

Android includes the NotificationListenerService APIs that allow apps (once explicitly enabled by the
user) to receive a copy of all notifications as they are posted or updated.

If device implementations report the feature flag android.hardware.ram.normal , they:
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e [C-1-1] MUST correctly and promptly update notifications in their entirety to all such
installed and user-enabled listener services, including any and all metadata attached to
the Notification object.

e [C-1-2] MUST respect the snoozeNotification() API call, and dismiss the notification and
make a callback after the snooze duration that is set in the API call.

If device implementations have a user affordance to snooze notifications, they:

e [C-2-1] MUST reflect the snoozed notification status properly through the standard APIs
such as NotificationListenerService.getSnoozedNotifications() .

e [C-2-2] MUST make this user affordance available to snooze notifications from each
installed third-party app's, unless they are from persistent/foreground services.

3.8.3.3. DND (Do not Disturb)

If device implementations support the DND feature, they:

e [C-1-1] MUST implement an activity that would respond to the intent
ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS , which for implementations with
UI_MODE_TYPE_NORMAL it MUST be an activity where the user can grant or deny the app
access to DND policy configurations.

e [C-1-2] MUST, for when the device implementation has provided a means for the user to
grant or deny third-party apps to access the DND policy configuration, display Automatic
DND rules created by applications alongside the user-created and pre-defined rules.

e [C-1-3] MUST honor the suppressedVisualEffects values passed along the
NotificationManager.Policy and if an app has set any of the
SUPPRESSED_EFFECT_SCREEN_OFF or SUPPRESSED_EFFECT_SCREEN_ON flags, it
SHOULD indicate to the user that the visual effects are suppressed in the DND settings
menu.

3.8.4. Search

Android includes APlIs that allow developers to incorporate search into their applications and expose
their application’s data into the global system search. Generally speaking, this functionality consists

of a single, system-wide user interface that allows users to enter queries, displays suggestions as

users type, and displays results. The Android APIs allow developers to reuse this interface to provide

search within their own apps and allow developers to supply results to the common global search
user interface.

e Android device implementations SHOULD include global search, a single, shared, system-
wide search user interface capable of real-time suggestions in response to user input.

If device implementations implement the global search interface, they:

e [C-1-1] MUST implement the APIs that allow third-party applications to add suggestions to
the search box when it is run in global search mode.

If no third-party applications are installed that make use of the global search:

e The default behavior SHOULD be to display web search engine results and suggestions.

Android also includes the Assist APIs to allow applications to elect how much information of the
current context is shared with the assistant on the device.

If device implementations support the Assist action, they:

e [C-2-1] MUST indicate clearly to the end user when the context is shared, by either:

o Each time the assist app accesses the context, displaying a white light around
the edges of the screen that meet or exceed the duration and brightness of the
Android Open Source Project implementation.

o For the preinstalled assist app, providing a user affordance less than two
navigations away from the default voice input and assistant app settings menu
, and only sharing the context when the assist app is explicitly invoked by the
user through a hotword or assist navigation key input.

e [C-2-2] The designated interaction to launch the assist app as described in section 7.2.3
MUST launch the user-selected assist app, in other words the app that implements
VoicelnteractionService , or an activity handling the ACTION_ASSIST intent.
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3.8.5. Alerts and Toasts

Applications can use the Toast API to display short non-modal strings to the end user that disappear
after a brief period of time, and use the TYPE_APPLICATION _OVERLAY window type API to display
alert windows as an overlay over other apps.

If device implementations include a screen or video output, they:

e [C-1-1] MUST provide a user affordance to block an app from displaying alert windows
that use the TYPE_APPLICATION_OVERLAY . The AOSP implementation meets this
requirement by having controls in the notification shade.

e [C-1-2] MUST honor the Toast API and display Toasts from applications to end users in
some highly visible manner.

3.8.6. Themes

Android provides “themes” as a mechanism for applications to apply styles across an entire Activity
or application.

Android includes a “Holo” and "Material" theme family as a set of defined styles for application
developers to use if they want to match the Holo theme look and feel as defined by the Android SDK.

If device implementations include a screen or video output, they:

e [C-1-1] MUST NOT alter any of the Holo theme attributes exposed to applications.

e [C-1-2] MUST support the “Material” theme family and MUST NOT alter any of theMaterial
theme attributes or their assets exposed to applications.

Android also includes a “Device Default” theme family as a set of defined styles for application
developers to use if they want to match the look and feel of the device theme as defined by the
device implementer.

e Device implementations MAY modify the Device Default theme attributes exposed to
applications.

Android supports a variant theme with translucent system bars, which allows application developers
to fill the area behind the status and navigation bar with their app content. To enable a consistent
developer experience in this configuration, it is important the status bar icon style is maintained
across different device implementations.

If device implementations include a system status bar, they:

e [C-2-1] MUST use white for system status icons (such as signal strength and battery
level) and notifications issued by the system, unless the icon is indicating a problematic
status or an app requests a light status bar using the
SYSTEM_UI_FLAG_LIGHT_STATUS_BAR flag.

e [C-2-2] Android device implementations MUST change the color of the system status
icons to black (for details, refer to R.style ) when an app requests a light status bar.

3.8.7. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows applications to
expose one or more “Live Wallpapers” to the end user. Live wallpapers are animations, patterns, or
similar images with limited input capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers,
with no limitations on functionality, at a reasonable frame rate with no adverse effects on other
applications. If limitations in the hardware cause wallpapers and/or applications to crash,
malfunction, consume excessive CPU or battery power, or run at unacceptably low frame rates, the
hardware is considered incapable of running live wallpaper. As an example, some live wallpapers
may use an OpenGL 2.0 or 3.x context to render their content. Live wallpaper will not run reliably on
hardware that does not support multiple OpenGL contexts because the live wallpaper use of an
OpenGL context may conflict with other applications that also use an OpenGL context.

o Device implementations capable of running live wallpapers reliably as described above
SHOULD implement live wallpapers.

If device implementations implement live wallpapers, they:

e [C-1-1] MUST report the platform feature flag android.software.live_wallpaper.
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3.8.8. Activity Switching

The upstream Android source code includes the overview screen, a system-level user interface for
task switching and displaying recently accessed activities and tasks using a thumbnail image of the
application’s graphical state at the moment the user last left the application.

Device implementations including the recents function navigation key as detailed in section 7.2.3
MAY alter the interface.

If device implementations including the recents function navigation key as detailed in section 7.2.3
alter the interface, they:

[C-1-1] MUST support at least up to 7 displayed activities.
e SHOULD at least display the title of 4 activities at a time.

e [C-1-2] MUST implement the screen pinning behavior and provide the user with a settings
menu to toggle the feature.

e SHOULD display highlight color, icon, screen title in recents.

e SHOULD display a closing affordance ("x") but MAY delay this until user interacts with
screens.

e SHOULD implement a shortcut to switch easily to the previous activity.

e SHOULD trigger the fast-switch action between the two most recently used apps, when
the recents function key is tapped twice.

e SHOULD trigger the split-screen multiwindow-mode, if supported, when the recents
functions key is long pressed.

o MAY display affiliated recents as a group that moves together.

e [SR] Are STRONGLY RECOMMENDED to use the upstream Android user interface (or a
similar thumbnail-based interface) for the overview screen.

3.8.9. Input Management

Android includes support for Input Management and support for third-party input method editors.
If device implementations allow users to use third-party input methods on the device, they:

e [C-1-1] MUST declare the platform feature android.software.input_methods and support
IME APIs as defined in the Android SDK documentation.

e [C-1-2] MUST provide a user-accessible mechanism to add and configure third-party input
methods in response to the android.settings.INPUT_METHOD_SETTINGS intent.

If device implementations declare the android.software.autofill feature flag, they:

e [C-2-1] MUST fully implement the AutofillService and AutofillManager APls and honor the

android.settings. REQUEST _SET_AUTOFILL_SERVICE intent to show a default app settings
menu to enable and disable autofill and change the default autofill service for the user.

3.8.10. Lock Screen Media Control

The Remote Control Client API is deprecated from Android 5.0 in favor of the Media Notification
Template that allows media applications to integrate with playback controls that are displayed on the
lock screen.

3.8.11. Screen savers (previously Dreams)

Android includes support for interactive screen savers, previously referred to as Dreams. Screen
savers allow users to interact with applications when a device connected to a power source is idle or
docked in a desk dock. Android Watch devices MAY implement screen savers, but other types of
device implementations SHOULD include support for screen savers and provide a settings option for
users to configure screen savers in response to the android.settings. DREAM_SETTINGS intent.

3.8.12. Location

If device implementations include a hardware sensor (e.g. GPS) that is capable of providing the
location coordinates, they

e [C-1-2] MUST display the current status of location in the Location menu within Settings.
e [C-1-3] MUST NOT display location modes in the Location menu within Settings.
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3.8.13. Unicode and Font

Android includes support for the emoji characters defined in Unicode 10.0 .
If device implementations include a screen or video output, they:

e [C-1-1] MUST be capable of rendering these emoji characters in color glyph.
e [C-1-2] MUST include support for:

o Roboto 2 font with different weights—sans-serif-thin, sans-serif-light, sans-
serif-medium, sans-serif-black, sans-serif-condensed, sans-serif-condensed-
light for the languages available on the device.

o Full Unicode 7.0 coverage of Latin, Greek, and Cyrillic, including the Latin
Extended A, B, C, and D ranges, and all glyphs in the currency symbols block of
Unicode 7.0.

e SHOULD support the skin tone and diverse family emojis as specified in the Unicode
Technical Report #51 .

If device implementations include an IME, they:

e SHOULD provide an input method to the user for these emoji characters.

Android includes support to render Myanmar fonts. Myanmar has several non-Unicode compliant
fonts, commonly known as “Zawgyi,” for rendering Myanmar languages.

If device implementations include support for Burmese, they:

* [C-2-1] MUST render text with Unicode compliant font as default;
non-Unicode compliant font MUST NOT be set as default font unless the user
chooses it in the language picker.

* [C-2-2] MUST support a Unicode font and a non-Unicode compliant font if a
non-Unicode compliant font is supported on the device. Non-Unicode
compliant font MUST NOT remove or overwrite the Unicode font.

* [C-2-3] MUST render text with non-Unicode compliant font ONLY IF a
language code with [script code Qaag](
http://unicode.org/reports/tr35/#unicode script subtag validity) is
specified (e.g. my-Qaag). No other ISO language or region codes (whether
assigned, unassigned, or reserved) can be used to refer to non-Unicode
compliant font for Myanmar. App developers and web page authors can
specify my-Qaag as the designated language code as they would for any
other language.

3.8.14. Multi-windows

If device implementations have the capability to display multiple activities at the same time, they:

e [C-1-1] MUST implement such multi-window mode(s) in accordance with the application
behaviors and APIs described in the Android SDK multi-window mode support
documentation and meet the following requirements:

e [C-1-2] MUST honor android:resizeableActivity that is set by an app in the
AndroidManifest.xml file as described in this SDK .

e [C-1-3] MUST NOT offer split-screen or freeform mode if the screen height is less than
440 dp and the screen width is less than 440 dp.

e [C-1-4] An activity MUST NOT be resized to a size smaller than 220dp in multi-window
modes other than Picture-in-Picture.

e Device implementations with screen size xlarge SHOULD support freeform mode.

If device implementations support multi-window mode(s), and the split screen mode, they:

e [C-2-1] MUST preload aresizeable launcher as the default.

e [C-2-2] MUST crop the docked activity of a split-screen multi-window but SHOULD show
some content of it, if the Launcher app is the focused window.

e [C-2-3] MUST honor the declared AndroidManifestLayout_minWidth and
AndroidManifestLayout _minHeight values of the third-party launcher application and not
override these values in the course of showing some content of the docked activity.

If device implementations support multi-window mode(s) and Picture-in-Picture multi-window mode,
they:
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[C-3-1] MUST launch activities in picture-in-picture multi-window mode when the app is: *
Targeting API level 26 or higher and declares android:supportsPicturelnPicture * Targeting
API level 25 or lower and declares both android:resizeableActivity and
android:supportsPicturelnPicture .

e [C-3-2] MUST expose the actions in their SystemUI as specified by the current PIP activity
through the setActions() API.

e [C-3-3] MUST support aspect ratios greater than or equal to 1:2.39 and less than or equal
to 2.39:1, as specified by the PIP activity through the setAspectRatio() API.

e [C-3-4] MUST use KeyEvent. KEYCODE_WINDOW to control the PIP window; if PIP mode
is not implemented, the key MUST be available to the foreground activity.

e [C-3-5] MUST provide a user affordance to block an app from displaying in PIP mode; the
AOSP implementation meets this requirement by having controls in the notification
shade.

e [C-3-6] MUST allocate minimum width and height of 108 dp for the PIP window and

minimum width of 240 dp and height of 135 dp for the PIP window when the

Configuration.uiMode is configured as UL MODE _TYPE TELEVISION .

3.8.15. Display Cutout

Android supports a Display Cutout as described in the SDK document. The DisplayCutout APl defines
an area on the edge of the display that is not functional for displaying content.

If device implementations include display cutout(s), they:

e [C-1-1] MUST only have cutout(s) on the short edge(s) of the device. Conversely, if the
device's aspect ratio is 1.0(1:1), they MUST NOT have cutout(s).

e [C-1-2] MUST NOT have more than one cutout per edge.

e [C-1-3] MUST honor the display cutout flags set by the app through the
WindowManager.LayoutParams APl as described in the SDK.

e [C-1-4] MUST report correct values for all cutout metrics defined in the DisplayCutout API.

3.9. Device Administration

Android includes features that allow security-aware applications to perform device administration
functions at the system level, such as enforcing password policies or performing remote wipe,
through the Android Device Administration API .

If device implementations implement the full range of device administration policies defined in the
Android SDK documentation, they:

e [C-1-1] MUST declare android.software.device _admin .

e [C-1-2] MUST support device owner provisioning as described in section 3.9.1 and section
3.9.1.1.

3.9.1 Device Provisioning
3.9.1.1 Device owner provisioning

If device implementations declare android.software.device admin , they:

e [C-1-1] MUST support enrolling a Device Policy Client (DPC) as aDevice Owner app as
described below:
o When the device implementation has no user data is configured yet, it:
= [C-1-3] MUST report true for
DevicePolicyManager.isProvisioningAllowed(ACTION_PROVISION_MANAGED_DEVICE)

= [C-1-4] MUST enroll the DPC application as the Device Owner app in
response to the intent action
android.app.action.PROVISION_MANAGED_ DEVICE .

= [C-1-5] MUST enroll the DPC application as the Device Owner app if
the device declares Near-Field Communications (NFC) support via
the feature flag android.hardware.nfc and receives an NFC message
containing a record with MIME type
MIME TYPE PROVISIONING NFEC.

o When the device implementation has user data, it:
= [C-1-6] MUST report false for the

android
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DevicePolicyManager.isProvisioningAllowed(ACTION PROVISION MANAGED DEVICE)

= [C-1-7] MUST not enroll any DPC application as the Device Owner
App any more.

e [C-1-2] MUST require some affirmative action during the provisioning process to consent
to the app being set as Device Owner. Consent can be via user action or by some
programmatic means during provisioning but it MUST NOT be hard coded or prevent the
use of other Device Owner apps.

If device implementations declare android.software.device admin , but also include a proprietary Device
Owner management solution and provide a mechanism to promote an application configured in their
solution as a "Device Owner equivalent” to the standard "Device Owner" as recognized by the
standard Android DevicePolicyManager APIs, they:

e [C-2-1] MUST have a process in place to verify that the specific app being promoted
belongs to a legitimate enterprise device management solution and it has been already
configured in the proprietary solution to have the rights equivalent as a "Device Owner".

e [C-2-2] MUST show the same AOSP Device Owner consent disclosure as the flow initiated
by android.app.action.PROVISION_MANAGED_DEVICE prior to enrolling the DPC
application as "Device Owner".

e MAY have user data on the device prior to enrolling the DPC application as "Device
Owner".

3.9.1.2 Managed profile provisioning

If device implementations declare android.software.managed_users , they:

e [C-1-1] MUST implement the APIs allowing a Device Policy Controller (DPC) application to
become the owner of a new Managed Profile .

e [C-1-2] The managed profile provisioning process (the flow initiated by
android.app.action.PROVISION_MANAGED_PROFILE ) users experience MUST align with
the AOSP implementation.

e [C-1-3] MUST provide the following user affordances within the Settings to indicate to the
user when a particular system function has been disabled by the Device Policy Controller
(DPC):

o A consistent icon or other user affordance (for example the upstream AOSP
info icon) to represent when a particular setting is restricted by a Device
Admin.

o A short explanation message, as provided by the Device Admin via the
setShortSupportMessage .

o The DPC application’s icon.

3.9.2 Managed Profile Support

If device implementations declare android.software.managed_users , they:

e [C-1-1] MUST support managed profiles via the android.app.admin.DevicePolicyManager
APls.

e [C-1-2] MUST allow one and only one managed profile to be created .

e [C-1-3] MUST use an icon badge (similar to the AOSP upstream work badge) to represent
the managed applications and widgets and other badged Ul elements like Recents &
Notifications.

e [C-1-4] MUST display a notification icon (similar to the AOSP upstream work badge) to
indicate when user is within a managed profile application.

e [C-1-5] MUST display a toast indicating that the user is in the managed profile if and when
the device wakes up (ACTION_USER_PRESENT) and the foreground application is within
the managed profile.

e [C-1-6] Where a managed profile exists, MUST show a visual affordance in the Intent

'Chooser' to allow the user to forward the intent from the managed profile to the primary

user or vice versa, if enabled by the Device Policy Controller.

[C-1-7] Where a managed profile exists, MUST expose the following user affordances for

both the primary user and the managed profile:

o Separate accounting for battery, location, mobile data and storage usage for
the primary user and managed profile.
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o Independent management of VPN Applications installed within the primary
user or managed profile.

o Independent management of applications installed within the primary user or
managed profile.

o Independent management of accounts within the primary user or managed
profile.

e [C-1-8] MUST ensure the preinstalled dialer, contacts and messaging applications can
search for and look up caller information from the managed profile (if one exists)
alongside those from the primary profile, if the Device Policy Controller permits it.

e [C-1-9] MUST ensure that it satisfies all the security requirements applicable for a device
with multiple users enabled (see section 9.5 ), even though the managed profile is not
counted as another user in addition to the primary user.

e [C-1-10] MUST support the ability to specify a separate lock screen meeting the following
requirements to grant access to apps running in a managed profile.

o Device implementations MUST honor the
DevicePolicyManager. ACTION_SET NEW_PASSWORD intent and show an
interface to configure a separate lock screen credential for the managed
profile.

o The lock screen credentials of the managed profile MUST use the same
credential storage and management mechanisms as the parent profile, as
documented on the Android Open Source Project Site.

o The DPC password policies MUST apply to only the managed profile's lock
screen credentials unless called upon the DevicePolicyManager instance
returned by getParentProfilelnstance .

e When contacts from the managed profile are displayed in the preinstalled call log, in-call
Ul, in-progress and missed-call notifications, contacts and messaging apps they SHOULD
be badged with the same badge used to indicate managed profile applications.

3.9.3 Managed User Support

If device implementations declare android.software.managed_users , they:
e [C-1-1] MUST provide a user affordance to logout from the current user and switch back

to the primary user in multiple-user session when isLogoutEnabled returns true . The user
affordance MUST be accessible from the lockscreen without unlocking the device.

3.10. Accessibility

Android provides an accessibility layer that helps users with disabilities to navigate their devices

more easily. In addition, Android provides platform APIs that enable accessibility service

implementations to receive callbacks for user and system events and generate alternate feedback

mechanisms, such as text-to-speech, haptic feedback, and trackball/d-pad navigation.
If device implementations support third-party accessibility services, they:

e [C-1-1] MUST provide an implementation of the Android accessibility framework as
described in the accessibility APIs SDK documentation.

e [C-1-2] MUST generate accessibility events and deliver the appropriate AccessibilityEvent

to all registered AccessibilityService implementations as documented in the SDK.

e [C-1-3] MUST honor the android.settings. ACCESSIBILITY_SETTINGS intent to provide a
user-accessible mechanism to enable and disable the third-party accessibility services
alongside the preinstalled accessibility services.

e [C-1-4] MUST add a button in the system's navigation bar allowing the user to control the

accessibility service when the enabled accessibility services declare the

AccessibilityServicelnfo.FLAG_REQUEST _ACCESSIBILITY_BUTTON . Note that for device

implementations with no system navigation bar, this requirement is not applicable, but

device implementations SHOULD provide a user affordance to control these accessibility

services.

If device implementations include preinstalled accessibility services, they:

e [C-2-1] MUST implement these preinstalled accessibility services as Direct Boot Aware
apps when the data storage is encrypted with File Based Encryption (FBE).

e SHOULD provide a mechanism in the out-of-box setup flow for users to enable relevant
accessibility services, as well as options to adjust the font size, display size and
magnification gestures.
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3.11. Text-to-Speech

Android includes APIs that allow applications to make use of text-to-speech (TTS) services and
allows service providers to provide implementations of TTS services.

If device implementations reporting the feature android.hardware.audio.output, they:

e [C-1-1] MUST support the Android TTS framework APIs.

If device implementations support installation of third-party TTS engines, they:

e [C-2-1] MUST provide user affordance to allow the user to select a TTS engine for use at
system level.

3.12. TV Input Framework

The Android Television Input Framework (TIF) simplifies the delivery of live content to Android
Television devices. TIF provides a standard API to create input modules that control Android
Television devices.

If device implementations support TIF, they:

e [C-1-1] MUST declare the platform feature android.software.live_tv .

e [C-1-2] MUST support all TIF APIs such that an application which uses these APIs and the
third-party TIF-based inputs service can be installed and used on the device.

3.13. Quick Settings

Android provides a Quick Settings Ul component that allows quick access to frequently used or
urgently needed actions.

If device implementations include a Quick Settings Ul component, they:

e [C-1-1] MUST allow the user to add or remove the tiles provided through the quicksettings
APIs from a third-party app.

e [C-1-2] MUST NOT automatically add a tile from a third-party app directly to the Quick
Settings.

e [C-1-3] MUST display all the user-added tiles from third-party apps alongside the system-
provided quick setting tiles.

3.14. Media Ul

If device implementations include non-voice-activated applications (the Apps) that interact with third-
party applications through MediaBrowser or MediaSession , the Apps:

[C-1-2] MUST clearly display icons obtained via getlconBitmap() or getlconUri() and titles
obtained via getTitle() as described in MediaDescription . May shorten titles to comply with
safety regulations (e.g. driver distraction).

e [C-1-3] MUST show the third-party application icon whenever displaying content provided
by this third-party application.

e [C-1-4] MUST allow the user to interact with the entire MediaBrowser hierarchy. MAY
restrict the access to part of the hierarchy to comply with safety regulations (e.g. driver
distraction), but MUST NOT give preferential treatment based on content or content
provider.

e [C-1-5] MUST consider double tap of KEYCODE _HEADSETHOOK or
KEYCODE MEDIA_PLAY_PAUSE as KEYCODE MEDIA_ NEXT for
MediaSession.Callback#onMediaButtonEvent .

3.15. Instant Apps
Device implementations MUST satisfy the following requirements:

e [C-0-1] Instant Apps MUST only be granted permissions that have the
android:protectionLevel set to "instant" .

e [C-0-2] Instant Apps MUST NOT interact with installed apps viaimplicit intents unless one
of the following is true:

android
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o The component's intent pattern filter is exposed and has
CATEGORY_BROWSABLE

o The action is one of ACTION_SEND, ACTION_SENDTO,
ACTION_SEND_MULTIPLE

o The target is explicitly exposed with android:visibleTolnstantApps

e [C-0-3] Instant Apps MUST NOT interact explicitly with installed apps unless the
component is exposed via android:visibleTolnstantApps.

e [C-0-4] Installed Apps MUST NOT see details about Instant Apps on the device unless the
Instant App explicitly connects to the installed application.

e Device implementations MUST provide the following user affordances for interacting with
Instant Apps. The AOSP meets the requirements with the default System Ul, Settings, and
Launcher. Device implementations:

o [C-0-5] MUST provide a user affordance to view and delete Instant Apps locally
cached for each individual app package.

o [C-0-6] MUST provide a persistent user notification that can be collapsed while
an Instant App is running in the foreground. This user notification MUST
include that Instant Apps do not require installation and provide a user
affordance that directs the user to the application info screen in Settings. For
Instant Apps launched via web intents, as defined by using an intent with
action set to Intent. ACTION VIEW and with a scheme of "http" or "https”, an
additional user affordance SHOULD allow the user not to launch the Instant
App and launch the associated link with the configured web browser, if a
browser is available on the device.

o [C-0-7] MUST allow running Instant Apps to be accessed from the Recents
function if the Recents function is available on the device.

3.16. Companion Device Pairing

Android includes support for companion device pairing to more effectively manage association with
companion devices and provides the CompanionDeviceManager API for apps to access this feature.

If device implementations support the companion device pairing feature, they:

e [C-1-1] MUST declare the feature flagFEATURE_COMPANION_DEVICE_SETUP .
e [C-1-2] MUST ensure the APIs in the android.companion package is fully implemented.

e [C-1-3] MUST provide user affordances for the user to select/confirm a companion device
is present and operational.

3.17. Heavyweight Apps

If device implementations declare the feature FEATURE _CANT_SAVE STATE, then they:

e [C-1-1] MUST have only one installed app that specifies cantSaveState running in the
system at a time. If the user leaves such an app without explicitly exiting it (for example
by pressing home while leaving an active activity the system, instead of pressing back
with no remaining active activities in the system), then device implementations MUST
prioritize that app in RAM as they do for other things that are expected to remain running,
such as foreground services. While such an app is in the background, the system can still
apply power management features to it, such as limiting CPU and network access.

e [C-1-2] MUST provide a Ul affordance to chose the app that won't participate in the normal
state save/restore mechanism once the user launches a second app declared with
cantSaveState attribute.

e [C-1-3] MUST NOT apply other changes in policy to apps that specify cantSaveState , such
as changing CPU performance or changing scheduling prioritization.

If device implementations don't declare the feature FEATURE_CANT _SAVE STATE, then they:

e [C-1-1] MUST ignore the cantSaveState attribute set by apps and MUST NOT change the
app behavior based on that attribute.

4. Application Packaging Compatibility
Devices implementations:

e [C-0-1] MUST be capable of installing and running Android “.apk” files as generated by the
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“aapt” tool included in the official Android SDK .

e As the above requirement may be challenging, device implementations are
RECOMMENDED to use the AOSP reference implementation's package management
system.

Device implementations:

e [C-0-2] MUST support verifying “.apk” files using the APK Signature Scheme v3, APK
Signature Scheme v2 and JAR signing .

e [C-0-3] MUST NOT extend either the .apk , Android Manifest, Dalvik bytecode, or
RenderScript bytecode formats in such a way that would prevent those files from
installing and running correctly on other compatible devices.

e [C-0-4] MUST NOT allow apps other than the current "installer of record" for the package
to silently uninstall the app without any user confirmation, as documented in the SDK for
the DELETE_PACKAGE permission. The only exceptions are the system package verifier
app handling PACKAGE_NEEDS_VERIFICATION intent and the storage manager app
handling ACTION_MANAGE_STORAGE intent.

e [C-0-5] MUST have an activity that handles the
android.settings. MANAGE_UNKNOWN_APP_SOURCES intent.

e [C-0-6] MUST NOT install application packages from unknown sources, unless the app
that requests the installation meets all the following requirements:
o It MUST declare the REQUEST INSTALL PACKAGES permission or have the
android:targetSdkVersion set at 24 or lower.
o It MUST have been granted permission by the user to install apps from
unknown sources.

e SHOULD provide a user affordance to grant/revoke the permission to install apps from
unknown sources per application, but MAY choose to implement this as a no-op and
return RESULT CANCELED for startActivityForResult() , if the device implementation does
not want to allow users to have this choice. However, even in such cases, they SHOULD
indicate to the user why there is no such choice presented.

e [C-0-7] MUST display a warning dialog with the warning string that is provided through the
system API PackageManager.setHarmful AppWarning to the user before launching an activity
in an application that has been marked by the same system API
PackageManager.setHarmful AppWarning as potentially harmful.

e SHOULD provide a user affordance to choose to uninstall or launch an application on the
warning dialog.

5. Multimedia Compatibility
Device implementations:

e [C-0-1] MUST support the media formats, encoders, decoders, file types, and container
formats defined in section 5.1 for each and every codec declared by MediaCodecList .

e [C-0-2] MUST declare and report support of the encoders, decoders available to third-
party applications via MediaCodecList .

e [C-0-3] MUST be able to properly decode and make available to third-party apps all the
formats it can encode. This includes all bitstreams that its encoders generate and the
profiles reported in its CamcorderProfile .

Device implementations:

e SHOULD aim for minimum codec latency, in others words, they
o SHOULD NOT consume and store input buffers and return input buffers only
once processed.
o SHOULD NOT hold onto decoded buffers for longer than as specified by the
standard (e.g. SPS).
o SHOULD NOT hold onto encoded buffers longer than required by the GOP
structure.

All of the codecs listed in the section below are provided as software implementations in the
preferred Android implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these
codecs are free from third-party patents. Those intending to use this source code in hardware or
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software products are advised that implementations of this code, including in open source software
or shareware, may require patent licenses from the relevant patent holders.

5.1. Media Codecs

5.1.1. Audio Encoding

See more details in 5.1.3. Audio Codecs Details .

If device implementations declare android.hardware.microphone , they MUST support encoding the
following audio formats and make them available to third-party apps:

e [C-1-1] PCM/WAVE
e [C-1-2] FLAC
e [C-1-3] Opus

All audio encoders MUST support:

e [C-3-1] PCM 16-bit native byte order audio frames via the android.media.MediaCodec API.

5.1.2. Audio Decoding

See more details in 5.1.3. Audio Codecs Details .

If device implementations declare support for the android.hardware.audio.output feature, they MUST
support decoding the following audio formats:

e [C-1-1] MPEG-4 AAC Profile (AAC LC)

[C-1-2] MPEG-4 HE AAC Profile (AAC+)

[C-1-3] MPEG-4 HE AACv2 Profile (enhanced AAC+)
[C-1-4] AAC ELD (enhanced low delay AAC)

[C-1-11] xHE-AAC (ISO/IEC 23003-3 Extended HE AAC Profile, which includes the USAC
Baseline Profile, and 1ISO/IEC 23003-4 Dynamic Range Control Profile)

[C-1-5] FLAC

[C-1-6] MP3

[c-1-7] MIDI

[C-1-8] Vorbis

[C-1-9] PCM/WAVE including high-resolution audio formats up to 24 bits, 192 kHz sample
rate, and 8 channels. Note that this requirement is for decoding only, and that a device is
permitted to downsample and downmix during the playback phase.

[C-1-10] Opus

If device implementations support the decoding of AAC input buffers of multichannel streams (i.e.
more than two channels) to PCM through the default AAC audio decoder in the
android.media.MediaCodec API, the following MUST be supported:

e [C-2-1] Decoding MUST be performed without downmixing (e.g. a 5.0 AAC stream MUST
be decoded to five channels of PCM, a 5.1 AAC stream MUST be decoded to six channels
of PCM).

e [C-2-2] Dynamic range metadata MUST be as defined in "Dynamic Range Control (DRC)" in
ISO/IEC 14496-3, and the android.media.MediaFormat DRC keys to configure the dynamic
range-related behaviors of the audio decoder. The AAC DRC keys were introduced in API
21, and are: KEY AAC DRC_ATTENUATION FACTOR,
KEY_AAC_DRC BOOST FACTOR,KEY AAC_DRC_HEAVY COMPRESSION,

KEY AAC DRC TARGET REFERENCE LEVEL and
KEY_AAC_ENCODED TARGET LEVEL .

e [SR] It is STRONGLY RECOMMENDED that requirements C-2-1 and C-2-2 above are

satisfied by all AAC audio decoders.

When decoding USAC audio, MPEG-D (ISO/IEC 23003-4):

e [C-3-1] Loudness and DRC metadata MUST be interpreted and applied according to
MPEG-D DRC Dynamic Range Control Profile Level 1.

e [C-3-2] The decoder MUST behave according to the configuration set with the following
android.media.MediaFormat keys: KEY AAC DRC TARGET REFERENCE LEVEL and
KEY AAC DRC EFFECT TYPE.
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MPEG-4 AAC, HE AAC, and HE AACv2 profile decoders:

e MAY support loudness and dynamic range control using ISO/IEC 23003-4 Dynamic Range
Control Profile.

If ISO/IEC 23003-4 is supported and if both ISO/IEC 23003-4 and ISO/IEC 14496-3 metadata are
present in a decoded bitstream, then:

e |SO/IEC 23003-4 metadata SHALL take precedence.

All audio decoders MUST support outputting:

e [C-6-1] PCM 16-bit native byte order audio frames via the android.media.MediaCodec API.

5.1.3. Audio Codecs Details

Codec

File
. Types/Container
Format/Codec Details Formats to be
supported
e 3GPP (.3gp)
o MPEG-4
(.mp4, .m4a)
e ADTS raw
AAC (.aac,
ADIF not

MPE.G-4 AAC Support for mono/stereo/5.0/5.1 content with standard sampling supported)

Profile * MPEG-TS

rates from 8 to 48 kHz.

(AAC LC) (.ts, not
seekable,
decode only)

e Matroska
(.mky,
decode only)
) e 3GPP (.3gp)
x:gclirifﬁlli Support for mono/stereo/5.0/5.1 content with standard sampling | ¢ MPEG-4

(AACH) rates from 16 to 48 kHz. (.mp4, .m4a)

XI:(E\Z“ HE e 3GPP (.3gp)

Profile Support for mono/stereo/5.0/5.1 content with standard sampling | ¢ MPEG-4

(enhanced rates from 16 to 48 kHz. (.mp4, .m4a)

AACH+)

AAC ELD e 3GPP (.3gp)

(enhanced Support for mono/stereo content with standard sampling rates o MPEG-4

low delay from 16 to 48 kHz. (.mp4, .m4a)

AAC)

Support for mono/stereo content with standard sampling rates MPEG-4 (.mp4,

USAC from 7.35 to 48 kHz. .m4a)

AMR-NB 4.75 to 12.2 kbps sampled @ 8 kHz 3GPP (.3gp)

9 rates from 6.60 kbit/s to 23.85 kbit/s sampled @ 16 kHz, as
AMR-WB defined at AMR-WB, Adaptive Multi-Rate - Wideband Speech 3GPP (.3gp)

android
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FLAC

For both encoder and decoder: at least Mono and Stereo modes
MUST be supported. Sample rates up to 192 kHz MUST be
supported; 16-bit and 24-bit resolution MUST be supported. FLAC
24-bit audio data handling MUST be available with floating point
audio configuration.

e FLAC (.flac)

e MPEG-4
(.mp4, .m4a,
decode only)

e Matroska
(.mkv,
decode only)

MP3

Mono/Stereo 8-320Kbps constant (CBR) or variable bitrate (VBR)

e MP3 (.mp3)

o MPEG-4
(.mp4, .m4a,
decode only)

e Matroska
(.mkv,
decode only)

MIDI

MIDI Type 0 and 1. DLS Version 1 and 2. XMF and Mobile XMF.
Support for ringtone formats RTTTL/RTX, OTA, and iMelody

Type O and 1
(.mid, .xmf,
.mxmf)

e RTTTL/RTX
(.rtttl, .rtx)
OTA (.ota)

¢ iMelody
(.imy)

Vorbis

0Ogg (-0gg)
o MPEG-4
(.mp4, .m4a,
decode only)
Matroska
(.mkv)

o Webm
(.webm)

PCM/WAVE

PCM codec MUST support 16-bit linear PCM and 16-bit float.
WAVE extractor MUST support 16-bit, 24-bit, 32-bit linear PCM
and 32-bit float (rates up to limit of hardware). Sampling rates
MUST be supported from 8 kHz to 192 kHz.

WAVE (.wav)

Opus

* Ogg (.0g9)

o MPEG-4
(.mp4, .m4a,
decode only)

o Matroska
(.mkv)

o Webm
(.webm)

5.1.4. Image Encoding

See more details in 5.1.6. Image Codecs Details .
Device implementations MUST support encoding the following image encoding:

e [C-0-1] JPEG

e [C-0-2] PNG

e [C-0-3] WebP

If device implementations support HEIC encoding via android.media.MediaCodec for media type
MIMETYPE IMAGE ANDROID_HEIC, they:

e [C-1-1] MUST provide a hardware-accelerated HEVC encoder codec that supports
BITRATE _MODE_CQ bitrate control mode, HEVCProfileMainStill profile and 512 x 512 px

android
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frame size.

5.1.5. Image Decoding

See more details in 5.1.6. Image Codecs Details .

Device implementations MUST support decoding the following image encoding:

e [C-0-1] JPEG
[C-0-2] GIF

[C-0-3] PNG
[C-0-4] BMP
[C-0-5] WebP
[C-0-6] Raw

[C-0-7] HEIF (HEIC)

Image decoders that support a high bit-depth format (9+ bits per channel)

e [C-1-1] MUST support outputting an 8-bit equivalent format if requested by the
application, for example, via the ARGB_8888 config of android.graphics.Bitmap .

5.1.6. Image Codecs Details

Format/Codec Details Supported File Types/Container Formats

JPEG Base+progressive JPEG (.jpg)

GIF GIF (.gif)

PNG PNG (.png)

BMP BMP (.bmp)

WebP WebP (.webp)

Raw ARW (.arw), CR2 (.cr2), DNG (.dng), NEF (.nef), NRW (.nrw),

ORF (.orf), PEF (.pef), RAF (.raf), RW2 (.rw2), SRW (.srw)

Image, Image

HEIF collection, Image HEIF (.heif), HEIC (.heic)

sequence

Image encoder and decoders exposed through the MediaCodec API

e [C-1-1] MUST support YUV420 8:8:8 flexible color format ( COLOR_FormatYUV420Flexible
) through CodecCapabilities .

e [SR] STRONGLY RECOMMENDED to support RGB888 color format for input Surface mode.

e [C-1-3] MUST support at least one of a planar or semiplanar YUV420 8:8:8 color format:
COLOR_FormatYUV420PackedPlanar (equivalent to COLOR_FormatYUV420Planar ) or

COLOR_FormatYUV420PackedSemiPlanar (equivalent to COLOR FormatYUV420SemiPlanar
). They are STRONGLY RECOMMENDED to support both.

5.1.7. Video Codecs

» For acceptable quality of web video streaming and video-conference services, device
implementations SHOULD use a hardware VP8 codec that meets the requirements .

If device implementations include a video decoder or encoder:

e [C-1-1] Video codecs MUST support output and input bytebuffer sizes that accommodate
the largest feasible compressed and uncompressed frame as dictated by the standard
and configuration but also not overallocate.

e [C-1-2] Video encoders and decoders MUST support YUV420 8:8:8 flexible color formats (
COLOR_FormatYUV420Flexible ) through CodecCapabilities .

e [C-1-3] Video encoders and decoders MUST support at least one of a planar or semiplanar
YUV420 8:8:8 color format: COLOR_FormatYUV420PackedPlanar (equivalent to
COLOR_FormatYUV420Planar ) or COLOR_FormatYUV420PackedSemiPlanar (equivalent to
COLOR_FormatYUV420SemiPlanar ). They are STRONGLY RECOMMENDED to support

android
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both.

¢ [SR] Video encoders and decoders are STRONGLY RECOMMENDED to support at least
one of a hardware optimized planar or semiplanar YUV420 8:8:8 color format (YV12,
NV12, NV21 or equivalent vendor optimized format.)

e [C-1-5] Video decoders that support a high bit-depth format (9+ bits per channel) MUST
support outputting an 8-bit equivalent format if requested by the application. This MUST
be reflected by supporting an YUV420 8:8:8 color format via android.media.MediaCodecInfo

If device implementations advertise HDR profile support through Display.HdrCapabilities , they:

e [C-2-1] MUST support HDR static metadata parsing and handling.

If device implementations advertise intra refresh support through FEATURE IntraRefresh in the
MediaCodecInfo.CodecCapabilities class, they:

e [C-3-1] MUST support the refresh periods in the range of 10 - 60 frames and accurately

operate within 20% of configured refresh period.

Unless the application specifies otherwise using the KEY _COLOR_FORMAT format key, video
decoder implementations:

e [C-4-1] MUST default to the color format optimized for hardware display if configured
using Surface output.
e [C-4-2] MUST default to a YUV420 8:8:8 color format optimized for CPU reading if
configured to not use Surface output.

5.1.8. Video Codecs List

Format/Codec Details File Types/Container Formats to be supported
e 3GPP (.3gp)
H.263 ¢ MPEG-4 (.mp4)
e Matroska (.mkv, decode only)
e 3GPP (.3gp)
¢ MPEG-4 (.mp4)
H.264 AVC See section 5.2 and 5.3 for details

o MPEG-2 TS (.ts, not seekable)
¢ Matroska (.mkv, decode only)

H.265 HEVC

See section 5.3 for details

o MPEG-4 (.mp4)
e Matroska (.mkv, decode only)

MPEG-2

Main Profile

o MPEG2-TS (.ts, not seekable)
e MPEG-4 (.mp4, decode only)
¢ Matroska (.mkv, decode only)

MPEG-4 SP

e 3GPP (.3gp)
o MPEG-4 (.mp4)
¢ Matroska (.mkv, decode only)

VP8

See section 5.2 and 5.3 for details

e WebM (.webm)
Matroska (.mkv)

VP9

See section 5.3 for details

o WebM (.webm)

¢ Matroska (.mkv)

5.1.9. Media Codec Security

Device implementations MUST ensure compliance with media codec security features as described

below.

android
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Android includes support for OMX, a cross-platform multimedia acceleration API, as well as Codec
2.0, a low-overhead multimedia acceleration API.

If device implementations support multimedia, they:

e [C-1-1] MUST provide support for media codecs either via OMX or Codec 2.0 APIs (or
both) as in the Android Open Source Project and not disable or circumvent the security
protections. This specifically does not mean that every codec MUST use either the OMX
or Codec 2.0 API, only that support for at least one of these APIs MUST be available, and
support for the available APls MUST include the security protections present.

e [C-SR] Are STRONGLY RECOMMENDED to include support for Codec 2.0 API.

If device implementations do not support the Codec 2.0 API, they:

e [C-2-1] MUST include the corresponding OMX software codec from the Android Open
Source Project (if it is available) for each media format and type (encoder or decoder)
supported by the device.

e [C-2-2] Codecs that have names starting with "OMX.google." MUST be based on their
Android Open Source Project source code.

e [C-SR] Are STRONGLY RECOMMENDED that the OMX software codecs run in a codec
process that does not have access to hardware drivers other than memory mappers.

If device implementations support Codec 2.0 API, they:

e [C-3-1] MUST include the corresponding Codec 2.0 software codec from the Android Open
Source Project (if it is available) for each media format and type (encoder or decoder)
supported by the device.

e [C-3-2] MUST house the Codec 2.0 software codecs in the software codec process as
provided in the Android Open Source Project to make it possible to more narrowly grant
access to software codecs.

e [C-3-3] Codecs that have names starting with "c2.android.”" MUST be based on their
Android Open Source Project source code.

5.1.10. Media Codec Characterization
If device implementations support media codecs, they:

e [C-1-1] MUST return correct values of media codec characterization via the
MediaCodeclInfo API.

In particular:

e [C-1-2] Codecs with names starting with "OMX." MUST use the OMX APIs and have names
that conform to OMX IL naming guidelines.

e [C-1-3] Codecs with names starting with "c2." MUST use the Codec 2.0 APl and have
names that conform to Codec 2.0 naming guidelines for Android.

e [C-1-4] Codecs with names starting with "OMX.google." or "c2.android." MUST NOT be
characterized as vendor or as hardware-accelerated.

e [C-1-5] Codecs that run in a codec process (vendor or system) that have access to
hardware drivers other than memory allocators and mappers MUST NOT be characterized
as software-only.

e [C-1-6] Codecs not present in the Android Open Source Project or not based on the source
code in that project MUST be characterized as vendor.

e [C-1-7] Codecs that utilize hardware acceleration MUST be characterized as hardware
accelerated.

e [C-1-8] Codec names MUST NOT be misleading. For example, codecs named "decoders"
MUST support decoding, and those named "encoders" MUST support encoding. Codecs
with names containing media formats MUST support those formats.

If device implementations support video codecs:

e [C-2-1] All video codecs MUST publish achievable frame rate data for the following sizes
if supported by the codec:

SD (high

SD (low quality) b

HD 720p HD 1080p UHD
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e 176 x 144 px (H263, | °* Z:g6x3;576 Px
MPEG2, MPEG4) e 1408 x
e 640 x 360 px
e 352 x 288 px (VP8, VPO) 1152 px
Video (MPEG4 encoder, ! (H263) [1920 x 1080 px |3840 x 2160
resolution  H263 MPEG2) ° ?&gééjo PX| . 1280x |(otherthan px (HEVC,
e 320 x 180 px (VPS, encoder) 720 px | MPEG4) VP9)
vPe) 720 x 480 (other)
. X px
e 320 x 240 px (other) (other)

e [C-2-2] Video codecs that are characterized as hardware accelerated MUST publish
performance points information. They MUST each list all supported standard
performance points (listed in PerformancePoint API), unless they are covered by another
supported standard performance point.

e Additionally they SHOULD publish extended performance points if they support sustained
video performance other than one of the standard ones listed.

5.2. Video Encoding
If device implementations support any video encoder and make it available to third-party apps, they:

e SHOULD NOT be, over two sliding windows, more than 15% over the bitrate between
intraframe (I-frame) intervals.
e SHOULD NOT be more than 100% over the bitrate over a sliding window of 1 second.

If device implementations include an embedded screen display with the diagonal length of at least
2.5 inches or include a video output port or declare the support of a camera via the
android.hardware.camera.any feature flag, they:

e [C-1-1] MUST include the support of at least one of the VP8 or H.264 video encoders, and
make it available for third-party applications.

e SHOULD support both VP8 and H.264 video encoders, and make it available for third-
party applications.

If device implementations support any of the H.264, VP8, VP9 or HEVC video encoders and make it
available to third-party applications, they:

e [C-2-1] MUST support dynamically configurable bitrates.

e SHOULD support variable frame rates, where video encoder SHOULD determine
instantaneous frame duration based on the timestamps of input buffers, and allocate its
bit bucket based on that frame duration.

If device implementations support the MPEG-4 SP video encoder and make it available to third-party
apps, they:

e SHOULD support dynamically configurable bitrates for the supported encoder.

If device implementations provide hardware accelerated video or image encoders, and support one or
more attached or pluggable hardware camera(s) exposed through the android.camera APlIs:

e [C-4-1] all hardware accelerated video and image encoders MUST support encoding
frames from the hardware camera(s).

e SHOULD support encoding frames from the hardware camera(s) through all video or
image encoders.

5.2.1. H.263

If device implementations support H.263 encoders and make it available to third-party apps, they:

e [C-1-1] MUST support Baseline Profile Level 45.
e SHOULD support dynamically configurable bitrates for the supported encoder.

5.2.2. H.264
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If device implementations support H.264 codec, they:

e [C-1-1] MUST support Baseline Profile Level 3. However, support for ASO (Arbitrary Slice
Ordering), FMO (Flexible Macroblock Ordering) and RS (Redundant Slices) is OPTIONAL.
Moreover, to maintain compatibility with other Android devices, it is RECOMMENDED that
ASO, FMO and RS are not used for Baseline Profile by encoders.

e [C-1-2] MUST support the SD (Standard Definition) video encoding profiles in the

following table.

e SHOULD support Main Profile Level 4.
e SHOULD support the HD (High Definition) video encoding profiles as indicated in the

following table.

If device implementations report support of H.264 encoding for 720p or 1080p resolution videos
through the media APIs, they:

e [C-2-1] MUST support the encoding profiles in the following table.

SD (Low quality) SD (High quality) HD 720p HD 1080p
Video resolution |320 x 240 px 720 x 480 px 1280 x720 px | 1920 x 1080 px
Video frame rate |20 fps 30 fps 30 fps 30 fps
Video bitrate 384 Kbps 2 Mbps 4 Mbps 10 Mbps
5.2.3. VP8

If device implementations support VP8 codec, they:

e [C-1-1] MUST support the SD video encoding profiles.

e SHOULD support the following HD (High Definition) video encoding profiles.

e [C-1-2] MUST support writing Matroska WebM files.

e SHOULD provide a hardware VP8 codec that meets the WebM project RTC hardware
coding requirements , to ensure acceptable quality of web video streaming and video-
conference services.

If device implementations report support of VP8 encoding for 720p or 1080p resolution videos
through the media APlIs, they:

e [C-2-1] MUST support the encoding profiles in the following table.

SD (Low quality) SD (High quality) HD 720p HD 1080p
Video resolution | 320 x 180 px 640 x 360 px 1280 x 720 px | 1920 x 1080 px
Video frame rate |30 fps 30 fps 30 fps 30 fps
Video bitrate 800 Kbps 2 Mbps 4 Mbps 10 Mbps
5.2.4.VP9

If device implementations support VP9 codec, they:

e [C-1-2] MUST support Profile 0 Level 3.

e [C-1-1] MUST support writing Matroska WebM files.
e [C-1-3] MUST generate CodecPrivate data.

e SHOULD support the HD decoding profiles as indicated in the following table.

e [SR] are STRONGLY RECOMMENDED to support the HD decoding profiles as indicated in
the following table if there is a hardware encoder.

SD HD 720p HD 1080p UHD
Video resolution | 720 x 480 px 1280 x 720 px 1920 x 1080 px 3840 x 2160 px
Video frame rate |30 fps 30 fps 30 fps 30 fps
Video bitrate 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

If device implementations claim to support Profile 2 or Profile 3 through the Media APIs:
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e Support for 12-bit format is OPTIONAL.

5.2.5. H.265

If device implementations support H.265 codec, they:

e [C-1-1] MUST support Main Profile Level 3.
e SHOULD support the HD encoding profiles as indicated in the following table.

e [SR] are STRONGLY RECOMMENDED to support the HD encoding profiles as indicated in
the following table if there is a hardware encoder.

SD HD 720p HD 1080p UHD
Video resolution | 720 x 480 px 1280 x 720 px 1920 x 1080 px 3840 x 2160 px
Video frame rate | 30 fps 30 fps 30 fps 30 fps
Video bitrate 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

5.3. Video Decoding
If device implementations support VP8, VP9, H.264, or H.265 codecs, they:
e [C-1-1] MUST support dynamic video resolution and frame rate switching through the

standard Android APIs within the same stream for all VP8, VP9, H.264, and H.265 codecs
in real time and up to the maximum resolution supported by each codec on the device.

5.3.1. MPEG-2
If device implementations support MPEG-2 decoders, they:

e [C-1-1] MUST support the Main Profile High Level.

5.3.2. H.263

If device implementations support H.263 decoders, they:

e [C-1-1] MUST support Baseline Profile Level 30 and Level 45.

5.3.3. MPEG-4
If device implementations with MPEG-4 decoders, they:

e [C-1-1] MUST support Simple Profile Level 3.

5.3.4. H.264

If device implementations support H.264 decoders, they:

e [C-1-1] MUST support Main Profile Level 3.1 and Baseline Profile. Support for ASO
(Arbitrary Slice Ordering), FMO (Flexible Macroblock Ordering) and RS (Redundant Slices)
is OPTIONAL.

e [C-1-2] MUST be capable of decoding videos with the SD (Standard Definition) profiles
listed in the following table and encoded with the Baseline Profile and Main Profile Level
3.1 (including 720p30).

e SHOULD be capable of decoding videos with the HD (High Definition) profiles as indicated
in the following table.

If the height that is reported by the Display.getSupportedModes() method is equal or greater than the

video resolution, device implementations:

e [C-2-1] MUST support the HD 720p video decoding profiles in the following table.
e [C-2-2] MUST support the HD 1080p video decoding profiles in the following table.

SD (Low quality) | SD (High quality) HD 720p HD 1080p

Video resolution |320 x 240 px 720 x 480 px 1280 x 720 px |1920 x 1080 px
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Video frame rate | 30 fps 30 fps 60 fps 30 fps (60 fps Television )

Video bitrate | 800 Kbps 2 Mbps 8 Mbps 20 Mbps

5.3.5. H.265 (HEVC)
If device implementations support H.265 codec, they:

e [C-1-1] MUST support the Main Profile Level 3 Main tier and the SD video decoding
profiles as indicated in the following table.

e SHOULD support the HD decoding profiles as indicated in the following table.

e [C-1-2] MUST support the HD decoding profiles as indicated in the following table if there
is a hardware decoder.

If the height that is reported by the Display.getSupportedModes() method is equal to or greater than the
video resolution, then:

e [C-2-1] Device implementations MUST support at least one of H.265 or VP9 decoding of
720, 1080 and UHD profiles.

SD (Low SD (High

quality) quality) HD 720p HD 1080p UHD
Video 352x288 |[720x480 1280 x 3840 x
resolution |px pXx 720 px 1920 x 1080 px 2160 px
Video frame 30/60 fps (60 fps Television with H.265
rate 30 fps 30 fps 30 fps vadvarsdecodng | 60 fps
Video | o kbps |1.6Mbps | 4Mbps | 5 Mbps 20 Mbps
bitrate P ’ P P P P

If device implementations claim to support an HDR Profile ( HEVCProfileMainl 0HDR10 ,
HEVCProfileMainl OHDR 10Plus ) through the Media APIs:

e [C-3-1] Device implementations MUST accept the required HDR metadata (
MediaFormat#KEY_HDR_STATIC_INFO for all HDR profiles) from the application using
MediaCodec API, as well as support extracting the required HDR metadata (
MediaFormat#KEY_HDR_STATIC_INFO for all HDR profiles, as well as
MediaFormat#KEY_HDR10_PLUS_INFO for HDR10Plus profiles) from the bitstream and/or
container as defined by the relevant specifications. They MUST also support outputting
the required HDR metadata ( MediaFormat#KEY_HDR_STATIC_INFO for all HDR profiles)
from the bitstream and/or container as defined by the relevant specifications.

e [C-SR] The device implementations are STRONGLY RECOMMENDED to support outputting
the metadata MediaFormat#KEY_HDR10_PLUS_INFO for HDR10PIlus profiles via
MediaCodec#getOutputFormat(int) .

e [C-3-2] Device implementations MUST properly display HDR content for
HEVCProfileMainl1 0HDR 10 profile on the device screen or on a standard video output port
(e.g., HDMI).

e [C-SR] Device implementations are STRONGLY RECOMMENDED to properly display HDR
content for HEVCProfileMainl 0OHDR 10Plus profile on the device screen or on a standard
video output port (e.g., HDMI).

5.3.6. VP8

If device implementations support VP8 codec, they:

e [C-1-1] MUST support the SD decoding profiles in the following table.
e SHOULD use a hardware VP8 codec that meets the requirements .
e SHOULD support the HD decoding profiles in the following table.

If the height as reported by the Display.getSupportedModes() method is equal or greater than the video
resolution, then:

e [C-2-1] Device implementations MUST support 720p profiles in the following table.
e [C-2-2] Device implementations MUST support 1080p profiles in the following table.
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SD (Low quality) | SD (High quality) HD 720p HD 1080p
Video resolution | 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px
Video frame rate | 30 fps 30 fps 30 fps (60 fps Te'evision ) | 30 (60 fps Television )
Video bitrate | 800 Kbps 2 Mbps 8 Mbps 20 Mbps
5.3.7. VP9

If device implementations support VP9 codec, they:

e [C-1-1] MUST support the SD video decoding profiles as indicated in the following table.
e SHOULD support the HD decoding profiles as indicated in the following table.

If device implementations support VP9 codec and a hardware decoder:

e [C-2-1] MUST support the HD decoding profiles as indicated in the following table.

If the height that is reported by the Display.getSupportedModes() method is equal to or greater than the
video resolution, then:

e [C-3-1] Device implementations MUST support at least one of VP9 or H.265 decoding of
the 720, 1080 and UHD profiles.

SD (Low SD (High
quality) quality) HD 720p HD 1080p UHD
Video 320x 180 1280 x 3840 x
resolution |px 640 x 360 px 720 px 1920 x 1080 px 2160 px
Video frame 30 fps (60 fps Television with VP9
rate 30 fps 30 fps 30 fps Hardwredecaing ) 60 fps
Video bitrate | 600 Kbps 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

If device implementations claim to support VP9Profile2 or VP9Profile3 through the 'CodecProfileLevel'

media APIs:

e Support for 12-bit format is OPTIONAL.

If device implementations claim to support an HDR Profile ( VP9Profile2HDR , VP9Profile2HDR10Plus ,
VP9Profile3HDR , VP9Profile3HDR 10Plus ) through the media APIs:

e [C-4-1] Device implementations MUST accept the required HDR metadata (
MediaFormat#KEY_HDR_STATIC _INFO for all HDR profiles, as well as parameter
MediaCodec#PARAMETER_KEY_HDR10_PLUS_INFO for HDR10Plus profiles) from the
application using MediaCodec API, as well as support extracting the required HDR
metadata ( MediaFormat#KEY HDR_STATIC_INFO for all HDR profiles, as well as
MediaFormat#KEY HDR10 PLUS INFO for HDR10Plus profiles) from the bitstream and/or
container as defined by the relevant specifications. They MUST also support outputting
the required HDR metadata ( MediaFormat#KEY_ HDR_STATIC_INFO for all HDR profiles)
from the bitstream and/or container as defined by the relevant specifications.

e [C-4-2] Device implementations MUST properly display HDR content for VP9Profile2HDR
and VP9Profile3HDR profiles on the device screen or on a standard video output port (e.g.,
HDMI).

e [C-SR] The device implementations are STRONGLY RECOMMENDED to support outputting
the metadata MediaFormat#KEY HDR10 PLUS INFO for HDR10Plus profiles via
MediaCodect#getOutputFormat(int) .

e [C-SR] Device implementations are STRONGLY RECOMMENDED to properly display HDR
content for VP9Profile2HDR10Plus and VP9Profile3HDR10PIlus profiles on the device
screen or on a standard video output port (e.g., HDMI).

5.3.8. Dolby Vision

If device implementations declare support for the Dolby Vision decoder through
HDR_TYPE_DOLBY_VISION , they:
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e [C-1-1] MUST provide a Dolby Vision-capable extractor.

e [C-1-2] MUST properly display Dolby Vision content on the device screen or on a standard
video output port (e.g., HDMI).

e [C-1-3] MUST set the track index of backward-compatible base-layer(s) (if present) to be
the same as the combined Dolby Vision layer's track index.

5.3.9. AV1

If device implementations support AV1 codec, they:

e [C-1-1] MUST support Profile 0 including 10-bit content.

5.4. Audio Recording

While some of the requirements outlined in this section are listed as SHOULD since Android 4.3, the
Compatibility Definition for future versions are planned to change these to MUST. Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements that are listed as
SHOULD, or they will not be able to attain Android compatibility when upgraded to the future version.

5.4.1. Raw Audio Capture and Microphone Information
If device implementations declare android.hardware.microphone , they:

e [C-1-1] MUST allow capture of raw audio content with the following characteristics:
o Format : Linear PCM, 16-bit
o Sampling rates : 8000, 11025, 16000, 44100, 48000 Hz
o Channels : Mono

SHOULD allow capture of raw audio content with the following characteristics:
o Format : Linear PCM, 16-bit and 24-bit
o Sampling rates : 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000 Hz
o Channels : As many channels as the number of microphones on the device

[C-1-2] MUST capture at above sample rates without up-sampling.

[C-1-3] MUST include an appropriate anti-aliasing filter when the sample rates given
above are captured with down-sampling.

SHOULD allow AM radio and DVD quality capture of raw audio content, which means the
following characteristics:

o Format : Linear PCM, 16-bit

o Sampling rates : 22050, 48000 Hz

o Channels : Stereo

[C-1-4] MUST honor the Microphonelnfo APl and properly fill in information for the
available microphones on device accessible to the third-party applications via the
AudioManager.getMicrophones() API, and the currently active microphones which are
accessible to the third party applications via the AudioRecord.getActiveMicrophones() and
MediaRecorder.getActiveMicrophones() APIs. If device implementations allow AM radio and
DVD quality capture of raw audio content, they:

e [C-2-1] MUST capture without up-sampling at any ratio higher than 16000:22050 or
44100:48000.

e [C-2-2] MUST include an appropriate anti-aliasing filter for any up-sampling or down-
sampling.

5.4.2. Capture for Voice Recoghnition

If device implementations declare android.hardware.microphone , they:

[C-1-1] MUST capture android.media.MediaRecorder. AudioSource. VOICE_RECOGNITION
audio source at one of the sampling rates, 44100 and 48000.

[C-1-2] MUST, by default, disable any noise reduction audio processing when recording an
audio stream from the AudioSource. VOICE_RECOGNITION audio source.

[C-1-3] MUST, by default, disable any automatic gain control when recording an audio
stream from the AudioSource. VOICE_ RECOGNITION audio source.

SHOULD record the voice recognition audio stream with approximately flat amplitude
versus frequency characteristics: specifically, +3 dB, from 100 Hz to 4000 Hz.
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e SHOULD record the voice recognition audio stream with input sensitivity set such that a
90 dB sound power level (SPL) source at 1000 Hz yields RMS of 2500 for 16-bit samples.

e SHOULD record the voice recognition audio stream so that the PCM amplitude levels
linearly track input SPL changes over at least a 30 dB range from -18 dB to +12 dB re 90
dB SPL at the microphone.

e SHOULD record the voice recognition audio stream with total harmonic distortion (THD)
less than 1% for 1 kHz at 90 dB SPL input level at the microphone.

If device implementations declare android.hardware.microphone and noise suppression (reduction)
technologies tuned for speech recognition, they:

e [C-2-1] MUST allow this audio effect to be controllable with the
android.media.audiofx.NoiseSuppressor API.

e [C-2-2] MUST uniquely identify each noise suppression technology implementation via the
AudioEffect.Descriptor.uuid field.

5.4.3. Capture for Rerouting of Playback

The android.media.MediaRecorder.AudioSource class includes the REMOTE SUBMIX audio source.

If device implementations declare both android.hardware.audio.output and android.hardware.microphone ,
they:

e [C-1-1] MUST properly implement the REMOTE_SUBMIX audio source so that when an
application uses the android.media.AudioRecord API to record from this audio source, it
captures a mix of all audio streams except for the following:

o AudioManager.STREAM_RING
o AudioManager. STREAM_ALARM
o AudioManager.STREAM_NOTIFICATION

5.4.4. Acoustic Echo Canceler

If device implementations declare android.hardware.microphone , they:

e SHOULD implement an Acoustic Echo Canceler (AEC) technology tuned for voice
communication and applied to the capture path when capturing using
AudioSource. VOICE COMMUNICATION

If device implementations provides an Acoustic Echo Canceler which is inserted in the capture audio
path when AudioSource. VOICE_ COMMUNICATION is selected, they:

e [C-SR] are STRONGLY_RECOMMENDED to declare this via AcousticEchoCanceler API
method AcousticEchoCanceler.isAvailable

e [C-SR] are STRONGLY_RECOMMENDED to allow this audio effect to be controllable with
the AcousticEchoCanceler API.

e [C-SR] are STRONGLY_RECOMMENDED to uniquely identify each AEC technology
implementation via the AudioEffect.Descriptor.uuid field.

5.4.5. Concurrent Capture

If device implementations declare android.hardware.microphone ,they MUST implement concurrent
capture as described in this document . Specifically:

e [C-1-1] MUST allow concurrent access to microphone by an accessibility service
capturing with AudioSource. VOICE_ RECOGNITION and at least one application capturing
with any AudioSource .

e [C-1-2] MUST allow concurrent access to microphone by a pre-installed application that
holds an Assistant role and at least one application capturing with any AudioSource except
for AudioSource. VOICE_ COMMUNICATION or AudioSource. CAMCORDER .

e [C-1-3] MUST silence the audio capture for any other application, except for an
accessibility service, while an application is capturing with
AudioSource. VOICE_ COMMUNICATION or AudioSource. CAMCORDER . However, when an
app is capturing via AudioSource. VOICE_ COMMUNICATION then another app can capture
the voice call if it is a privileged (pre-installed) app with permission
CAPTURE AUDIO OUTPUT.

e [C-1-4] If two or more applications are capturing concurrently and if neither app has an Ul
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on top, the one that started capture the most recently receives audio.

5.4.6. Microphone Gain Levels

If device implementations declare android.hardware.microphone , they:

e SHOULD exhibit approximately flat amplitude-versus-frequency characteristics in the mid-
frequency range: specifically +3dB from 100 Hz to 4000 Hz for each and every
microphone used to record the voice recognition audio source.

e SHOULD set audio input sensitivity such that a 1000 Hz sinusoidal tone source played at
90 dB Sound Pressure Level (SPL) yields a response with RMS of 2500 for 16 bit-samples
(or -22.35 dB Full Scale for floating point/double precision samples) for each and every
microphone used to record the voice recognition audio source.

e [C-SR] are STRONGLY RECOMMENDED to exhibit amplitude levels in the low frequency
range: specifically from +20 dB from 5 Hz to 100 Hz compared to the mid-frequency
range for each and every microphone used to record the voice recognition audio source.

e [C-SR] are STRONGLY RECOMMENDED to exhibit amplitude levels in the high frequency
range: specifically from +30 dB from 4000 Hz to 22 KHz compared to the mid-frequency
range for each and every microphone used to record the voice recognition audio source.

5.5. Audio Playback

Android includes the support to allow apps to playback audio through the audio output peripheral as

defined in section 7.8.2.

5.5.1. Raw Audio Playback
If device implementations declare android.hardware.audio.output , they:

e [C-1-1] MUST allow playback of raw audio content with the following characteristics:
o Source formats : Linear PCM, 16-bit, 8-bit, float
o Channels : Mono, Stereo, valid multichannel configurations with up to 8
channels
o Sampling rates (in Hz) :
= 8000, 11025, 16000, 22050, 32000, 44100, 48000 at the channel
configurations listed above
= 96000 in mono and stereo

e SHOULD allow playback of raw audio content with the following characteristics:
o Sampling rates : 24000

5.5.2. Audio Effects

Android provides an API for audio effects for device implementations.
If device implementations declare the feature android.hardware.audio.output , they:

e [C-1-1] MUST support the EFFECT_TYPE_EQUALIZER and
EFFECT _TYPE _LOUDNESS ENHANCER implementations controllable through the
AudioEffect subclasses Equalizer and LoudnessEnhancer .

e [C-1-2] MUST support the visualizer APl implementation, controllable through the
Visualizer class.

e [C-1-3] MUST support the EFFECT TYPE DYNAMICS PROCESSING implementation
controllable through the AudioEffect subclass DynamicsProcessing .

e SHOULD support the EFFECT TYPE _BASS BOOST, EFFECT TYPE ENV_REVERB,
EFFECT TYPE PRESET REVERB, and EFFECT TYPE VIRTUALIZER implementations
controllable through the AudioEffect sub-classes BassBoost , EnvironmentalReverb ,
PresetReverb , and Virtualizer .

e [C-SR] Are STRONGLY RECOMMENDED to support effects in floating-point and
multichannel.

5.5.3. Audio Output Volume

Automotive device implementations:
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e SHOULD allow adjusting audio volume separately per each audio stream using the
content type or usage as defined by AudioAttributes and car audio usage as publicly
defined in android.car.CarAudioManager .

5.6. Audio Latency

Audio latency is the time delay as an audio signal passes through a system. Many classes of
applications rely on short latencies, to achieve real-time sound effects.

For the purposes of this section, use the following definitions:

o output latency . The interval between when an application writes a frame of PCM-coded
data and when the corresponding sound is presented to environment at an on-device
transducer or signal leaves the device via a port and can be observed externally.

o cold output latency . The output latency for the first frame, when the audio output system
has been idle and powered down prior to the request.

e continuous output latency . The output latency for subsequent frames, after the device is
playing audio.

e input latency . The interval between when a sound is presented by environment to device
at an on-device transducer or signal enters the device via a port and when an application
reads the corresponding frame of PCM-coded data.

e lost input . The initial portion of an input signal that is unusable or unavailable.

e cold input latency . The sum of lost input time and the input latency for the first frame,
when the audio input system has been idle and powered down prior to the request.

e continuous input latency . The input latency for subsequent frames, while the device is
capturing audio.

o cold output jitter . The variability among separate measurements of cold output latency
values.

o cold input jitter . The variability among separate measurements of cold input latency
values.

e continuous round-trip latency . The sum of continuous input latency plus continuous
output latency plus one buffer period. The buffer period allows time for the app to process
the signal and time for the app to mitigate phase difference between input and output
streams.

e OpenSL ES PCM buffer queue API . The set of PCM-related OpenSL ES APIs within
Android NDK .

e AAudio native audio API. The set of AAudio APIs within Android NDK .

o timestamp . A pair consisting of a relative frame position within a stream and the
estimated time when that frame enters or leaves the audio processing pipeline on the
associated endpoint. See also AudioTimestamp .

e glitch . A temporary interruption or incorrect sample value in the audio signal, typically
caused by a buffer underrun for output, buffer overrun for input, or any other source of
digital or analog noise.

If device implementations declare android.hardware.audio.output , they MUST meet or exceed the
following requirements:

e [C-1-1] The output timestamp returned by AudioTrack.getTimestamp and
AAudioStream_getTimestamp is accurate to +/- 2 ms.
e [C-1-2] Cold output latency of 500 milliseconds or less.

If device implementations declare android.hardware.audio.output they are STRONGLY RECOMMENDED
to meet or exceed the following requirements:

e [C-SR] Cold output latency of 100 milliseconds or less. Existing and new devices that run
this version of Android are VERY STRONGLY RECOMMENDED to meet these requirements
now. In a future platform release in 2021, we will require Cold output latency of 200 ms or
less as a MUST.

e [C-SR] Continuous output latency of 45 milliseconds or less.

e [C-SR] Minimize the cold output jitter.

e [C-SR] The output timestamp returned by AudioTrack.getTimestamp and
AAudioStream_getTimestamp is accurate to +/- 1 ms.

If device implementations meet the above requirements, after any initial calibration, when using both
the OpenSL ES PCM buffer queue and AAudio native audio APIs, for continuous output latency and
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cold output latency over at least one supported audio output device, they are:

e [C-SR] STRONGLY RECOMMENDED to report low-latency audio by declaring
android.hardware.audio.low_latency feature flag.

e [C-SR] STRONGLY RECOMMENDED to meet the requirements for low-latency audio via the
AAudio API.

e [C-SR] STRONGLY RECOMMENDED to ensure that for streams that return
AAUDIO_PERFORMANCE MODE_LOW_LATENCY from
AAudioStream_getPerformanceMode() , the value returned by
AAudioStream_getFramesPerBurst() is less than or equal to the value returned by
android.media. AudioManager.getProperty(String) for property key
AudioManager.PROPERTY_OUTPUT FRAMES PER BUFFER .

If device implementations do not meet the requirements for low-latency audio via both the OpenSL
ES PCM buffer queue and AAudio native audio APIs, they:

e [C-2-1] MUST NOT report support for low-latency audio.

If device implementations include android.hardware.microphone , they MUST meet these input audio
requirements:

e [C-3-1] Limit the error in input timestamps, as returned by AudioRecord.getTimestamp or
AAudioStream_getTimestamp , to +/- 2 ms. "Error" here means the deviation from the
correct value.

e [C-3-2] Cold input latency of 500 milliseconds or less.

If device implementations include android.hardware.microphone , they are STRONGLY RECOMMENDED
to meet these input audio requirements:

e [C-SR] Cold input latency of 100 milliseconds or less. Existing and new devices that run
this version of Android are VERY STRONGLY RECOMMENDED to meet these requirements
now. In a future platform release in 2021 we will require Cold input latency of 200 ms or
less as a MUST.

[C-SR] Continuous input latency of 30 milliseconds or less.

[C-SR] Continuous round-trip latency of 50 milliseconds or less.

[C-SR] Minimize the cold input jitter.

[C-SR] Limit the error in input timestamps, as returned by AudioRecord.getTimestamp or
AAudioStream_getTimestamp , to +/- 1 ms.

5.7. Network Protocols

Device implementations MUST support the media network protocols for audio and video playback as
specified in the Android SDK documentation.

If device implementations include an audio or a video decoder, they:

e [C-1-1] MUST support all required codecs and container formats in section 5.1 over
HTTP(S).

e [C-1-2] MUST support the media segment formats shown in the Media Segment Formats
table below over HTTP Live Streaming draft protocol, Version 7.

e [C-1-3] MUST support the following RTP audio video profile and related codecs in the
RTSP table below. For exceptions please see the table footnotes in section 5.1 .

Media Segment Formats

Segment formats Reference(s) Required codec support

android
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Video codecs:

e H264 AVC
e MPEG-4 SP
e MPEG-2

See section 5.1.3 for details on H264 AVC,
MPEG-2 Transport Stream ISO 13818 | MPEG2-4 SP,
and MPEG-2.

Audio codecs:

o AAC
See section 5.1.1 for details on AAC and its
variants.

AAC with ADTS framing and ID3 1SO 13818-7 Seg section 5.1.1 for details on AAC and its

tags ~|variants

WebVTT WebVTT

RTSP (RTP, SDP)

Profile name | Reference(s) Required codec support

H264 AVC RFC 6184 See section 5.1.3 for details on H264 AVC

MP4A-LATM |RFC 6416 See section 5.1.1 for details on AAC and its variants

RFC 3551
H263-1998 RFC 4629 See section 5.1.3 for details on H263
RFC 2190
H263-2000 RFC 4629 See section 5.1.3 for details on H263
AMR RFC 4867 See section 5.1.1 for details on AMR-NB
AMR-WB RFC 4867 See section 5.1.1 for details on AMR-WB

MP4V-ES RFC 6416 See section 5.1.3 for details on MPEG-4 SP

mpegfl- REC 3640 See section 5.1.1 for details on AAC and its variants
generic
MP2T REC 2250 See MPEG-2 Transport Stream underneath HTTP Live Streaming for

details

5.8. Secure Media

If device implementations support secure video output and are capable of supporting secure
surfaces, they:

e [C-1-1] MUST declare support for Display. FLAG_SECURE .

If device implementations declare support for Display. FLAG_SECURE and support wireless display
protocol, they:

e [C-2-1] MUST secure the link with a cryptographically strong mechanism such as HDCP
2.x or higher for the displays connected through wireless protocols such as Miracast.

If device implementations declare support for Display. FLAG_SECURE and support wired external
display, they:

e [C-3-1] MUST support HDCP 1.2 or higher for all external displays connected via a user-
accessible wired port.

5.9. Musical Instrument Digital Interface (MIDI)

If device implementations report support for feature android.software.midi via the
android.content.pm.PackageManager class, they:
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[C-1-1] MUST support MIDI over all MIDI-capable hardware transports for which they
provide generic non-MIDI connectivity, where such transports are:

o USB host mode, section 7.7

o USB peripheral mode, section 7.7

o MIDI over Bluetooth LE acting in central role, section 7.4.3

[C-1-2] MUST support the inter-app MIDI software transport (virtual MIDI devices)
[C-1-3] MUST include libamidi.so (native MIDI support)

5.10. Professional Audio

If device implementations report support for feature android.hardware.audio.pro via the
android.content.pm.PackageManager class, they:

[C-1-1] MUST report support for feature android.hardware.audio.low_latency .
[C-1-2] MUST have a continuous round-trip audio latency, as defined insection 5.6 Audio
Latency , of 20 milliseconds or less and SHOULD be 10 milliseconds or less over at least
one supported path.
[C-1-3] MUST include a USB port(s) supporting USB host mode and USB peripheral mode.
[C-1-4] MUST report support for feature android.software.midi .
[C-1-5] MUST meet latencies and USB audio requirements using both the OpenSL ES PCM
buffer queue API and at least one path of the AAudio native audio API.
[SR] Are STRONGLY RECOMMENDED to meet latencies and USB audio requirements using
the AAudio native audio APl over the MMAP path .
[C-1-6] MUST have Cold output latency of 200 milliseconds or less.
[C-1-7] MUST have Cold input latency of 200 milliseconds or less.
[SR] Are STRONGLY RECOMMENDED to provide a consistent level of CPU performance
while audio is active and CPU load is varying. This SHOULD be tested using the Android
app version of SynthMark commit id 09b13c6f49ea089f8c31e5d035f912cc405b7ah8 .
SynthMark uses a software synthesizer running on a simulated audio framework that
measures system performance. The SynthMark app needs to be run using the
“Automated Test” option and achieve the following results:

o voicemark.90 >= 32 voices

o latencymark.fixed.little <= 15 msec

o latencymark.dynamic.little <= 50 msec

See the SynthMark documentation for an explanation of the benchmarks.

SHOULD minimize audio clock inaccuracy and drift relative to standard time.
SHOULD minimize audio clock drift relative to the CPUCLOCK _MONOTONIC when both
are active.

SHOULD minimize audio latency over on-device transducers.
SHOULD minimize audio latency over USB digital audio.
SHOULD document audio latency measurements over all paths.

SHOULD minimize jitter in audio buffer completion callback entry times, as this affects
usable percentage of full CPU bandwidth by the callback.

SHOULD provide zero audio glitches under normal use at reported latency.
SHOULD provide zero inter-channel latency difference.

SHOULD minimize MIDI mean latency over all transports.

SHOULD minimize MIDI latency variability under load (jitter) over all transports.
SHOULD provide accurate MIDI timestamps over all transports.

SHOULD minimize audio signal noise over on-device transducers, including the period
immediately after cold start.

SHOULD provide zero audio clock difference between the input and output sides of
corresponding end-points, when both are active. Examples of corresponding end-points
include the on-device microphone and speaker, or the audio jack input and output.
SHOULD handle audio buffer completion callbacks for the input and output sides of
corresponding end-points on the same thread when both are active, and enter the output
callback immediately after the return from the input callback. Or if it is not feasible to
handle the callbacks on the same thread, then enter the output callback shortly after
entering the input callback to permit the application to have a consistent timing of the
input and output sides.

SHOULD minimize the phase difference between HAL audio buffering for the input and
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output sides of corresponding end-points.
e SHOULD minimize touch latency.
e SHOULD minimize touch latency variability under load (jitter).

e SHOULD have a latency from touch input to audio output of less than or equal to 40 ms.

If device implementations meet all of the above requirements, they:

e [SR] STRONGLY RECOMMENDED to report support for feature android.hardware.audio.pro
via the android.content.pm.PackageManager class.

If device implementations include a 4 conductor 3.5mm audio jack, they:

e [C-2-1] MUST have the continuous round-trip audio latency to be 20 milliseconds or less

over the audio jack path.

e [SR] STRONGLY RECOMMENDED to comply with section Mobile device (jack)
specifications of the Wired Audio Headset Specification (v1.1) .

e The continuous round-trip audio latency SHOULD be 10 milliseconds or less over the
audio jack path.

If device implementations omit a 4 conductor 3.5mm audio jack and include a USB port(s) supporting

USB host mode, they:

[C-3-1] MUST implement the USB audio class.

the USB host mode port using USB audio class.

host mode port using USB audio class.
[C-SR] Are STRONGLY RECOMMENDED to support simultaneous 1/0 up to 8 channels

each direction, 96 kHz sample rate, and 24-bit or 32-bit depth, when used with USB audio

peripherals that also support these requirements.

If device implementations include an HDMI port, they:

e SHOULD support output in stereo and eight channels at 20-bit or 24-bit depth and 192
kHz without bit-depth loss or resampling, in at least one configuration.

5.11. Capture for Unprocessed

Android includes support for recording of unprocessed audio via the

android.media.MediaRecorder.AudioSource. UNPROCESSED audio source. In OpenSL ES, it can be

accessed with the record preset SL_ ANDROID RECORDING _PRESET UNPROCESSED .

If device implementations intent to support unprocessed audio source and make it available to third-

party apps, they:

e [C-1-1] MUST report the support through the android.media. AudioManager property
PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED .

e [C-1-2] MUST exhibit approximately flat amplitude-versus-frequency characteristics in the

mid-frequency range: specifically +10dB from 100 Hz to 7000 Hz for each and every
microphone used to record the unprocessed audio source.

e [C-1-3] MUST exhibit amplitude levels in the low frequency range: specifically from +20 dB

from 5 Hz to 100 Hz compared to the mid-frequency range for each and every
microphone used to record the unprocessed audio source.

e [C-1-4] MUST exhibit amplitude levels in the high frequency range: specifically from +30

dB from 7000 Hz to 22 KHz compared to the mid-frequency range for each and every
microphone used to record the unprocessed audio source.

e [C-1-5] MUST set audio input sensitivity such that a 1000 Hz sinusoidal tone source

played at 94 dB Sound Pressure Level (SPL) yields a response with RMS of 520 for 16 bit-

samples (or -36 dB Full Scale for floating point/double precision samples) for each and
every microphone used to record the unprocessed audio source.

e [C-1-6] MUST have a signal-to-noise ratio (SNR) at 60 dB or higher for each and every

microphone used to record the unprocessed audio source. (whereas the SNR is measured

as the difference between 94 dB SPL and equivalent SPL of self noise, A-weighted).

[C-3-2] MUST have a continuous round-trip audio latency of 20 milliseconds or less over

The continuous round-trip audio latency SHOULD be 10 milliseconds or less over the USB

[C-1-7] MUST have a total harmonic distortion (THD) less than be less than 1% for 1 kHZ
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at 90 dB SPL input level at each and every microphone used to record the unprocessed
audio source.

e MUST not have any other signal processing (e.g. Automatic Gain Control, High Pass Filter,
or Echo cancellation) in the path other than a level multiplier to bring the level to desired
range. In other words:

e [C-1-8] If any signal processing is present in the architecture for any reason, it MUST be
disabled and effectively introduce zero delay or extra latency to the signal path.

e [C-1-9] The level multiplier, while allowed to be on the path, MUST NOT introduce delay or
latency to the signal path.

All SPL measurements are made directly next to the microphone under test. For multiple microphone
configurations, these requirements apply to each microphone.

If device implementations declare android.hardware.microphone but do not support unprocessed audio
source, they:

e [C-2-1] MUST return null for the
AudioManager.getProperty(PROPERTY SUPPORT AUDIO_SOURCE_UNPROCESSED) API
method, to properly indicate the lack of support.

¢ [SR] are still STRONGLY RECOMMENDED to satisfy as many of the requirements for the
signal path for the unprocessed recording source.

6. Developer Tools and Options Compatibility

6.1. Developer Tools
Device implementations:

e [C-0-1] MUST support the Android Developer Tools provided in the Android SDK.

¢ Android Debug Bridge (adb)

o [C-0-2] MUST support adb as documented in the Android SDK and the shell
commands provided in the AOSP, which can be used by app developers,
including dumpsys cmd stats

o [C-SR] Are STRONGLY RECOMMENDED to support the shell commandcmd
testharness .

o [C-0-3] MUST NOT alter the format or the contents of device system events
(batterystats , diskstats, fingerprint, graphicsstats, netstats, notification,
procstats) logged via the dumpsys command.

o [C-0-10] MUST record, without omission, and make the following events
accessible and available to the cmd stats shell command and the StatsManager
System API class.

= ActivityForegroundStateChanged
= AnomalyDetected

= AppBreadcrumbReported

= AppCrashOccurred

= AppStartOccurred

= BatteryLevelChanged

= BatterySaverModeStateChanged
= BleScanResultReceived

= BleScanStateChanged

= ChargingStateChanged

= DeviceldleModeStateChanged

= ForegroundServiceStateChanged
= GpsScanStateChanged

= JobStateChanged

= PluggedStateChanged

s ScheduledJobStateChanged

= ScreenStateChanged

= SyncStateChanged

= SystemElapsedRealtime

= UidProcessStateChanged

= WakelockStateChanged

= WakeupAlarmOccurred
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= WifiLockStateChanged
= WifiMulticastLockStateChanged
= WifiScanStateChanged
o [C-0-4] MUST have the device-side adb daemon be inactive by default and
there MUST be a user-accessible mechanism to turn on the Android Debug
Bridge.
o [C-0-5] MUST support secure adb. Android includes support for secure adb.
Secure adb enables adb on known authenticated hosts.
o [C-0-6] MUST provide a mechanism allowing adb to be connected from a host
machine. For example:
= Device implementations without a USB port supporting peripheral
mode MUST implement adb via local-area network (such as
Ethernet or Wi-Fi).
= MUST provide drivers for Windows 7, 9 and 10, allowing developers
to connect to the device using the adb protocol.

Dalvik Debug Monitor Service (ddms)

o [C-0-7] MUST support all ddms features as documented in the Android SDK.
As ddms uses adb, support for ddms SHOULD be inactive by default, but
MUST be supported whenever the user has activated the Android Debug
Bridge, as above.

e Monkey
o [C-0-8] MUST include the Monkey framework and make it available for
applications to use.

SysTrace
o [C-0-9] MUST support the systrace tool as documented in the Android SDK.
Systrace MUST be inactive by default and there MUST be a user-accessible
mechanism to turn on Systrace.

Perfetto

o [C-SR] Are STRONGLY RECOMMENDED to expose a /system/bin/perfetto binary
to the shell user which cmdline complies with the perfetto documentation .

o [C-SR] The perfetto binary is STRONGLY RECOMMENDED to accept as input a
protobuf config that complies with the schema defined in the perfetto
documentation .

o [C-SR] The perfetto binary is STRONGLY RECOMMENDED to write as output a
protobuf trace that complies with the schema defined in the perfetto
documentation .

o [C-SR] Are STRONGLY RECOMMENDED to provide, through the perfetto binary,
at least the data sources described in the perfetto documentation .

e Test Harness Mode
If device implementations support the shell command c¢md testharness and run cmd
testharness enable , they:
o [C-2-1] MUST return true for ActivityManager.isRunningInUserTestHarness()
o [C-2-2] MUST implement Test Harness Mode as described inharness mode
documentation .

If device implementations report the support of Vulkan 1.0 or higher via the
android.hardware.vulkan.version feature flags, they:

e [C-1-1] MUST provide an affordance for the app developer to enable/disable GPU debug
layers.

e [C-1-2] MUST, when the GPU debug layers are enabled, enumerate layers in libraries
provided by external tools (i.e. not part of the platform or application package) found in
debuggable applications' base directory to support
vkEnumeratelnstancelayerProperties() and vkCreatelnstance() APl methods.

6.2. Developer Options

Android includes support for developers to configure application development-related settings.
Device implementations MUST provide a consistent experience for Developer Options, they:

e [C-0-1] MUST honor the android.settings. APPLICATION_DEVELOPMENT_SETTINGS intent
to show application development-related settings. The upstream Android implementation
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hides the Developer Options menu by default and enables users to launch Developer
Options after pressing seven (7) times on the Settings > About Device > Build Number
menu item.

e [C-0-2] MUST hide Developer Options by default.

e [C-0-3] MUST provide a clear mechanism that does not give preferential treatment to one
third-party app as opposed to another to enable Developer Options. MUST provide a
public visible document or website that describes how to enable Developer Options. This
document or website MUST be linkable from the Android SDK documents.

e SHOULD have an ongoing visual notification to the user when Developer Options is
enabled and the safety of the user is of concern.

e MAY temporarily limit access to the Developer Options menu, by visually hiding or
disabling the menu, to prevent distraction for scenarios where the safety of the user is of
concern.

7. Hardware Compatibility

If a device includes a particular hardware component that has a corresponding API for third-party
developers:

e [C-0-1] The device implementation MUST implement that API as described in the Android
SDK documentation.

If an API in the SDK interacts with a hardware component that is stated to be optional and the device
implementation does not possess that component:

e [C-0-2] Complete class definitions (as documented by the SDK) for the component APIs
MUST still be presented.

[C-0-3] The API's behaviors MUST be implemented as no-ops in some reasonable fashion.
[C-0-4] API methods MUST return null values where permitted by the SDK documentation.
[C-0-5] API methods MUST return no-op implementations of classes where null values are
not permitted by the SDK documentation.

[C-0-6] API methods MUST NOT throw exceptions not documented by the SDK
documentation.

[C-0-7] Device implementations MUST consistently report accurate hardware
configuration information via the getSystemAvailableFeatures() and hasSystemFeature(String)
methods on the android.content.pm.PackageManager class for the same build
fingerprint.

A typical example of a scenario where these requirements apply is the telephony API: Even on non-
phone devices, these APls MUST be implemented as reasonable no-ops.

7.1. Display and Graphics

Android includes facilities that automatically adjust application assets and Ul layouts appropriately

for the device to ensure that third-party applications run well on a variety of hardware configurations .

On the Android-compatible display(s) where all third-party Android-compatible applications can run,
device implementations MUST properly implement these APIs and behaviors, as detailed in this
section.

The units referenced by the requirements in this section are defined as follows:

e physical diagonal size . The distance in inches between two opposing corners of the
illuminated portion of the display.

o dots per inch (dpi) . The number of pixels encompassed by a linear horizontal or vertical
span of 1”. Where dpi values are listed, both horizontal and vertical dpi MUST fall within
the range.

e aspect ratio . The ratio of the pixels of the longer dimension to the shorter dimension of
the screen. For example, a display of 480x854 pixels would be 854/480 = 1.779, or
roughly “16:9".

¢ density-independent pixel (dp) . The virtual pixel unit normalized to a 160 dpi screen,
calculated as: pixels = dps * (density/160).

7.1.1. Screen Configuration

7.1.1.1. Screen Size and Shape
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The Android Ul framework supports a variety of different logical screen layout sizes, and allows
applications to query the current configuration's screen layout size via Configuration.screenLayout with
the SCREENLAYOUT SIZE MASK and Configuration.smallestScreenWidthDp .

Device implementations:

e [C-0-1] MUST report the correct layout size for the Configuration.screenLayout as defined in
the Android SDK documentation. Specifically, device implementations MUST report the
correct logical density-independent pixel (dp) screen dimensions as below:

o Devices with the Configuration.uiMode set as any value other than
UI_MODE_TYPE_WATCH, and reporting a small size for the
Configuration.screenLayout , MUST have at least 426 dp x 320 dp.

o Devices reporting a normal size for the Configuration.screenLayout , MUST have
at least 480 dp x 320 dp.

o Devices reporting a large size for the Configuration.screenLayout, MUST have at
least 640 dp x 480 dp.

o Devices reporting a xlarge size for the Configuration.screenLayout, MUST have at
least 960 dp x 720 dp.

e [C-0-2] MUST correctly honor applications' stated support for screen sizes through the <
supports-screens > attribute in the AndroidManifest.xml, as described in the Android SDK
documentation.

e MAY have the Android-compatible display(s) with rounded corners.

If device implementations support UL MODE TYPE NORMAL and include the Android-compatible
display(s) with rounded corners, they:

e [C-1-1] MUST ensure that the radius of the rounded corners is less than or equal to 38 dp.

e SHOULD include user affordance to switch to the display mode with the rectangular
corners.

7.1.1.2. Screen Aspect Ratio

While there is no restriction to the aspect ratio of the physical display for the Android-compatible
display(s), the aspect ratio of the logical display where third-party apps are rendered, which can be
derived from the height and width values reported through the view.Display APls and Configuration
APIls, MUST meet the following requirements:

e [C-0-1] Device implementations with Configuration.uiMode set to
Ul MODE _TYPE NORMAL MUST have an aspect ratio value less than or equal to 1.86
(roughly 16:9), unless the app meets one of the following conditions:
o The app has declared that it supports a larger screen aspect ratio through the
android.max_aspect metadata value.
o The app declares it is resizeable via the android:resizeableActivity attribute.
o The app targets API level 24 or higher and does not declare an
android:maxAspectRatio that would restrict the allowed aspect ratio.

e [C-0-2] Device implementations with Configuration.uiMode set to
UI_MODE_TYPE _NORMAL MUST have an aspect ratio value equal to or greater than
1.3333 (4:3), unless the app can be stretched wider by meeting one of the following
conditions:
o The app declares it is resizeable via the android:resizeableActivity attribute.
o The app declares an android:minAspectRatio that would restrict the allowed
aspect ratio.

e [C-0-3] Device implementations with the Configuration.uiMode set as
Ul_MODE_TYPE_WATCH MUST have an aspect ratio value set as 1.0 (1:1).

7.1.1.3. Screen Density

The Android Ul framework defines a set of standard logical densities to help application developers
target application resources.

e [C-0-1] By default, device implementations MUST report only one of the Android
framework densities that are listed on DisplayMetrics through the
DENSITY_DEVICE STABLE API and this value MUST NOT change at any time; however,
the device MAY report a different arbitrary density according to the display configuration
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changes made by the user (for example, display size) set after initial boot.

e Device implementations SHOULD define the standard Android framework density that is
numerically closest to the physical density of the screen, unless that logical density
pushes the reported screen size below the minimum supported. If the standard Android
framework density that is numerically closest to the physical density results in a screen
size that is smaller than the smallest supported compatible screen size (320 dp width),
device implementations SHOULD report the next lowest standard Android framework
density.

If there is an affordance to change the display size of the device:

e [C-1-1] The display size MUST NOT be scaled any larger than 1.5 times the native density
or produce an effective minimum screen dimension smaller than 320dp (equivalent to
resource qualifier sw320dp), whichever comes first.

e [C-1-2] Display size MUST NOT be scaled any smaller than 0.85 times the native density.

* To ensure good usability and consistent font sizes, it is RECOMMENDED that the
following scaling of Native Display options be provided (while complying with the limits
specified above)

e Small: 0.85x

e Default: 1x (Native display scale)

e Large: 1.15x

e Larger: 1.3x

e Largest 1.45x

7.1.2. Display Metrics

If device implementations include the Android-compatible display(s) or video output to the Android-
compatible display screen(s), they:

e [C-1-1] MUST report correct values for all Android-compatible display metrics defined in
the android.util.DisplayMetrics API.

If device implementations does not include an embedded screen or video output, they:

e [C-2-1] MUST report correct values of the Android-compatible display as defined in the
android.util.DisplayMetrics APl for the emulated default view.Display .

7.1.3. Screen Orientation

Device implementations:

e [C-0-1] MUST report which screen orientations they support (
android.hardware.screen.portrait and/or android.hardware.screen.landscape ) and MUST report at
least one supported orientation. For example, a device with a fixed orientation landscape
screen, such as a television or laptop, SHOULD only report android.hardware.screen.landscape

e [C-0-2] MUST report the correct value for the device's current orientation, whenever
queried via the android.content.res.Configuration.orientation ,
android.view.Display.getOrientation() , or other APlIs.

If device implementations support both screen orientations, they:
e [C-1-1] MUST support dynamic orientation by applications to either portrait or landscape

screen orientation. That is, the device MUST respect the application’s request for a
specific screen orientation.

e [C-1-2] MUST NOT change the reported screen size or density when changing orientation.
o MAY select either portrait or landscape orientation as the default.

7.1.4. 2D and 3D Graphics Acceleration
7.1.4.1 OpenGL ES

Device implementations:

e [C-0-1] MUST correctly identify the supported OpenGL ES versions (1.1, 2.0, 3.0, 3.1, 3.2)
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through the managed APIs (such as via the GLES10.getString() method) and the native
APlIs.

e [C-0-2] MUST include the support for all the corresponding managed APIs and native APls
for every OpenGL ES versions they identified to support.

If device implementations include a screen or video output, they:

e [C-1-1] MUST support both OpenGL ES 1.1 and 2.0, as embodied and detailed in the
Android SDK documentation .

e [C-SR] Are STRONGLY RECOMMENDED to support OpenGL ES 3.1.

e SHOULD support OpenGL ES 3.2.

If device implementations support any of the OpenGL ES versions, they:

[C-2-1] MUST report via the OpenGL ES managed APIs and native APIs any other OpenGL
ES extensions they have implemented, and conversely MUST NOT report extension
strings that they do not support.

e [C-2-2] MUST support the EGL_KHR_image , EGL_KHR_image base,
EGL_ANDROID image native buffer, EGL_ANDROID get native client buffer,
EGL_KHR_wait_sync, EGL_KHR_get_all proc_addresses , EGL_ANDROID_presentation_time ,
EGL_KHR swap buffers with damage , EGL_ANDROID _recordable , and
EGL_ANDROID_GLES_layers extensions.

e [C-SR] Are STRONGLY RECOMMENDED to support the EGL_KHR_partial update and
OES_EGL image external extensions.

e SHOULD accurately report via the getString() method, any texture compression format that

they support, which is typically vendor-specific.

If device implementations declare support for OpenGL ES 3.0, 3.1, or 3.2, they:

e [C-3-1] MUST export the corresponding function symbols for these version in addition to
the OpenGL ES 2.0 function symbols in the libGLESv2.so library.

e [SR] Are STRONGLY RECOMMENDED to support the OES_EGL_image_external_essl3
extension.

If device implementations support OpenGL ES 3.2, they:

e [C-4-1] MUST support the OpenGL ES Android Extension Pack in its entirety.

If device implementations support the OpenGL ES Android Extension Pack in its entirety, they:

e [C-5-1] MUST identify the support through the android.hardware.opengles.aep feature flag.

If device implementations expose support for the EGL_KHR_mutable_render_buffer extension, they:

e [C-6-1] MUST also support the EGL_ANDROID _front buffer auto_refresh extension.

7.1.4.2 Vulkan

Android includes support for Vulkan , a low-overhead, cross-platform API for high-performance 3D

graphics.
If device implementations support OpenGL ES 3.1, they:

e [SR] Are STRONGLY RECOMMENDED to include support for Vulkan 1.1.

If device implementations include a screen or video output, they:

e SHOULD include support for Vulkan 1.1.

If device implementations include support for Vulkan 1.0, they:

e [C-1-1] MUST report the correct integer value with the android.hardware.vulkan.level and
android.hardware.vulkan.version feature flags.

e [C-1-2] MUST enumerate, at least one VkPhysicalDevice for the Vulkan native API
vkEnumeratePhysicalDevices() .

e [C-1-3] MUST fully implement the Vulkan 1.0 APIs for each enumerated VkPhysicalDevice .

Page 76 of 126


https://developer.android.com/guide/topics/graphics/opengl.html
https://developer.android.com/reference/android/opengl/GLES31Ext.html
https://www.khronos.org/registry/vulkan/specs/1.0-wsi&lowbarextensions/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/man/html/vkEnumeratePhysicalDevices.html

e [C-1-4] MUST enumerate layers, contained in native libraries named aslibVkLayer* so in
the application package’s native library directory, through the Vulkan native APIs
vkEnumeratelnstanceLayerProperties() and vkEnumerateDeviceLayerProperties() .

e [C-1-5] MUST NOT enumerate layers provided by libraries outside of the application
package, or provide other ways of tracing or intercepting the Vulkan API, unless the
application has the android:debuggable attribute set as true .

e [C-1-6] MUST report all extension strings that they do support via the Vulkan native APIs
and conversely MUST NOT report extension strings that they do not correctly support.

e [C-1-7] MUST support the VK_KHR_surface, VK_KHR_android_surface,
VK_KHR_swapchain, and VK_KHR_incremental_present extensions.

e [C-SR] Are STRONGLY RECOMMENDED to support the VK_KHR_driver_properties and
VK_GOOGLE_display_timing extensions.

If device implementations do not include support for Vulkan 1.0, they:

e [C-2-1] MUST NOT declare any of the Vulkan feature flags (e.g.
android.hardware.vulkan.level , android.hardware.vulkan.version ).

e [C-2-2] MUST NOT enumerate any VkPhysicalDevice for the Vulkan native API
vkEnumeratePhysicalDevices() .

If device implementations include support for Vulkan 1.1 and declare any of the Vulkan feature flags,
they:

e [C-3-1] MUST expose support for the SYNC_FD external semaphore and handle types and
the VK_ANDROID external memory android hardware buffer extension.

7.1.4.3 RenderScript

e [C-0-1] Device implementations MUST support Android RenderScript , as detailed in the
Android SDK documentation.

7.1.4.4 2D Graphics Acceleration

Android includes a mechanism for applications to declare that they want to enable hardware
acceleration for 2D graphics at the Application, Activity, Window, or View level through the use of a
manifest tag android:hardwareAccelerated or direct API calls.

Device implementations:

e [C-0-1] MUST enable hardware acceleration by default, and MUST disable hardware
acceleration if the developer so requests by setting android:hardwareAccelerated="false”
or disabling hardware acceleration directly through the Android View APIs.

e [C-0-2] MUST exhibit behavior consistent with the Android SDK documentation on
hardware acceleration .

Android includes a TextureView object that lets developers directly integrate hardware-accelerated
OpenGL ES textures as rendering targets in a Ul hierarchy.

Device implementations:

e [C-0-3] MUST support the TextureView API, and MUST exhibit consistent behavior with
the upstream Android implementation.

7.1.4.5 Wide-gamut Displays

If device implementations claim support for wide-gamut displays through
Configuration.isScreenWideColorGamut() , they:

[C-1-1] MUST have a color-calibrated display.

[C-1-2] MUST have a display whose gamut covers the sRGB color gamut entirely in CIE
1931 xyY space.

[C-1-3] MUST have a display whose gamut has an area of at least 90% of DCI-P3 in CIE
1931 xyY space.

[C-1-4] MUST support OpenGL ES 3.1 or 3.2 and report it properly.

[C-1-5] MUST advertise support for the EGL_KHR no_config_context,

EGL_EXT pixel format float, EGL KHR gl colorspace , EGL EXT gl colorspace scrgb,

android
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EGL_EXT gl colorspace scrgb linear, EGL_EXT gl colorspace display p3,
EGL_EXT gl _colorspace_display_p3_linear, and
EGL_EXT gl colorspace display p3 passthrough extensions.

e [C-SR] Are STRONGLY RECOMMENDED to support G EXT sRGB .

Conversely, if device implementations do not support wide-gamut displays, they:

e [C-2-1] SHOULD cover 100% or more of sRGB in CIE 1931 xyY space, although the screen
color gamut is undefined.

7.1.5. Legacy Application Compatibility Mode

Android specifies a “compatibility mode” in which the framework operates in a 'normal’ screen size
equivalent (320dp width) mode for the benefit of legacy applications not developed for old versions
of Android that pre-date screen-size independence.

7.1.6. Screen Technology

The Android platform includes APIs that allow applications to render rich graphics to an Android-
compatible display. Devices MUST support all of these APIs as defined by the Android SDK unless
specifically allowed in this document.

All of a device implementation's Android-compatible displays:

[C-0-1] MUST be capable of rendering 16-bit color graphics.

SHOULD support displays capable of 24-bit color graphics.

[C-0-2] MUST be capable of rendering animations.

[C-0-3] MUST have a pixel aspect ratio (PAR) between 0.9 and 1.15. That is, the pixel
aspect ratio MUST be near square (1.0) with a 10 ~ 15% tolerance.

7.1.7. Secondary Displays

Android includes support for secondary Android-compatible displays to enable media sharing
capabilities and developer APIs for accessing external displays.

If device implementations support an external display either via a wired, wireless, or an embedded
additional display connection, they:

e [C-1-1] MUST implement the DisplayManager system service and API as described in the
Android SDK documentation.

7.2. Input Devices

Device implementations:

e [C-0-1] MUST include an input mechanism, such as atouchscreen or non-touch navigation
, to navigate between the Ul elements.

7.2.1. Keyboard

If device implementations include support for third-party Input Method Editor (IME) applications,
they:

e [C-1-1] MUST declare the android.software.input_methods feature flag.
e [C-1-2] MUST implement fully Input Management Framework
e [C-1-3] MUST have a preinstalled software keyboard.

Device implementations: * [C-0-1] MUST NOT include a hardware keyboard that does not match one
of the formats specified in android.content.res.Configuration.keyboard (QWERTY or 12-key). *
SHOULD include additional soft keyboard implementations. * MAY include a hardware keyboard.

7.2.2. Non-touch Navigation

Android includes support for d-pad, trackball, and wheel as mechanisms for non-touch navigation.
Device implementations:
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e [C-0-1] MUST report the correct value for android.content.res.Configuration.navigation .

If device implementations lack non-touch navigations, they:

e [C-1-1] MUST provide a reasonable alternative user interface mechanism for the selection
and editing of text, compatible with Input Management Engines. The upstream Android
open source implementation includes a selection mechanism suitable for use with
devices that lack non-touch navigation inputs.

7.2.3. Navigation Keys

The Home, Recents , and Back functions typically provided via an interaction with a dedicated
physical button or a distinct portion of the touch screen, are essential to the Android navigation
paradigm and therefore, device implementations:

e [C-0-1] MUST provide a user affordance to launch installed applications that have an
activity with the <intent-filter> set with ACTION=MAIN and CATEGORY=LAUNCHER or
CATEGORY=LEANBACK_LAUNCHER for Television device implementations. The Home
function SHOULD be the mechanism for this user affordance.

e SHOULD provide buttons for the Recents and Back function.

If the Home, Recents, or Back functions are provided, they:

e [C-1-1] MUST be accessible with a single action (e.g. tap, double-click or gesture) when
any of them are accessible.

e [C-1-2] MUST provide a clear indication of which single action would trigger each
function. Having a visible icon imprinted on the button, showing a software icon on the
navigation bar portion of the screen, or walking the user through a guided step-by-step
demo flow during the out-of-box setup experience are examples of such an indication.

Device implementations:

e [SR] are STRONGLY RECOMMENDED to not provide the input mechanism for the Menu
function as it is deprecated in favor of action bar since Android 4.0.

If device implementations provide the Menu function, they:

e [C-2-1] MUST display the action overflow button whenever the action overflow menu
popup is not empty and the action bar is visible.

e [C-2-2] MUST NOT modify the position of the action overflow popup displayed by
selecting the overflow button in the action bar, but MAY render the action overflow popup
at a modified position on the screen when it is displayed by selecting the Menu function.

If device implementations do not provide the Menu function, for backwards compatibility, they: * [C-
SR] Are STRONGLY RECOMMENDED make the Menu function available to applications when
targetSdk Version is less than 10, either by a physical button, a software key, or gestures. This Menu
function SHOULD be accessible unless hidden together with other navigation functions.

If device implementations provide the Assist function , they:

e [C-4-1] MUST make the Assist function accessible with a single action (e.g. tap, double-
click or gesture) when other navigation keys are accessible.

e [SR] STRONGLY RECOMMENDED to use long press on HOME function as this designated
interaction.

If device implementations use a distinct portion of the screen to display the navigation keys, they:

e [C-5-1] Navigation keys MUST use a distinct portion of the screen, not available to
applications, and MUST NOT obscure or otherwise interfere with the portion of the screen
available to applications.

e [C-5-2] MUST make available a portion of the display to applications that meets the
requirements defined in section 7.1.1.

e [C-5-3] MUST honor the flags set by the app through the View.setSystemUiVisibility() API
method, so that this distinct portion of the screen (a.k.a. the navigation bar) is properly
hidden away as documented in the SDK.

If the navigation function is provided as an on-screen, gesture-based action:
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MUST only be used to report the

Home gesture recognition area.
e [C-6-2] Gestures that start within an exclusion rect as provided by the foreground

application via View#setSystemGestureExclusionRects() , but outside of
Windowlnsets#getMandatorySystemGesturelnsets() , MUST NOT be intercepted for the
navigation function as long as the exclusion rect is allowed within the max exclusion limit
as specified in the documentation for View#setSystemGestureExclusionRects() .

e [C-6-3] MUST send the foreground app a MotionEvent. ACTION_CANCEL event once
touches start being intercepted for a system gesture, if the foreground app was previously
sent an MotionEvent ACTION _DOWN event.

e [C-6-4] MUST provide a user affordance to switch to an on-screen, button-based
navigation (for example, in Settings).

e SHOULD provide Home function as a swipe up from the bottom edge of the current
orientation of the screen.

e SHOULD provide Recents function as a swipe up and hold before release, from the same
area as the Home gesture.

e Gestures that start within WindowInsets#getMandatorySystemGesturelnsets
affected by exclusion rects provided by the foreground application via
ViewttsetSystemGestureExclusionRects() .

SHOULD NOT be

If a navigation function is provided from anywhere on the left and right edges of the current
orientation of the screen:

e [C-7-1] The navigation function MUST be Back and provided as a swipe from both left and
right edges of the current orientation of the screen.

e [C-7-2] If custom swipeable system panels are provided on the left or right edges, they
MUST be placed within the top 1/3rd of the screen with a clear, persistent visual
indication that dragging in would invoke the aforementioned panels, and hence not Back.
A system panel MAY be configured by a user such that it lands below the top 1/3rd of the
screen edge(s) but the system panel MUST NOT use longer than 1/3rd of the edge(s).

e [C-7-3] When the foreground app has either the View.SYSTEM UI FLAG_IMMERSIVE or
View.SYSTEM_UI FLAG IMMERSIVE _STICKY flags set, swiping from the edges MUST
behave as implemented in AOSP, which is documented in the SDK .

e [C-7-4] When the foreground app has either the View.SYSTEM UI FLAG_IMMERSIVE or
View.SYSTEM_UI_FLAG_IMMERSIVE _STICKY flags set, custom swipeable system
panels MUST be hidden until the user brings in the system bars (a.k.a. navigation and
status bar) as implemented in AOSP.

7.2.4. Touchscreen Input

Android includes support for a variety of pointer input systems, such as touchscreens, touch pads,
and fake touch input devices. Touchscreen-based device implementations are associated with a
display such that the user has the impression of directly manipulating items on screen. Since the
user is directly touching the screen, the system does not require any additional affordances to
indicate the objects being manipulated.

Device implementations:

e SHOULD have a pointer input system of some kind (either mouse-like or touch).
e SHOULD support fully independently tracked pointers.

If device implementations include a touchscreen (single-touch or better), they:

e [C-1-1] MUST report TOUCHSCREEN_FINGER for the Configuration.touchscreen API field.
e [C-1-2] MUST report the android.hardware.touchscreen and android.hardware.faketouch feature
flags.

If device implementations include a touchscreen that can track more than a single touch, they:

e [C-2-1] MUST report the appropriate feature flags android.hardware.touchscreen.multitouch ,
android.hardware.touchscreen.multitouch.distinct ,
android.hardware.touchscreen.multitouch.jazzhand corresponding to the type of the specific
touchscreen on the device.

If device implementations do not include a touchscreen (and rely on a pointer device only) and meet
the fake touch requirements in section 7.2.5, they:
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e [C-3-1] MUST NOT report any feature flag starting with android.hardware.touchscreen and
MUST report only android.hardware.faketouch .

7.2.5. Fake Touch Input

Fake touch interface provides a user input system that approximates a subset of touchscreen
capabilities. For example, a mouse or remote control that drives an on-screen cursor approximates
touch, but requires the user to first point or focus then click. Numerous input devices like the mouse,
trackpad, gyro-based air mouse, gyro-pointer, joystick, and multi-touch trackpad can support fake
touch interactions. Android includes the feature constant android.hardware.faketouch, which
corresponds to a high-fidelity non-touch (pointer-based) input device such as a mouse or trackpad
that can adequately emulate touch-based input (including basic gesture support), and indicates that
the device supports an emulated subset of touchscreen functionality.

If device implementations do not include a touchscreen but include another pointer input system
which they want to make available, they:

e SHOULD declare support for the android.hardware.faketouch feature flag.

If device implementations declare support for android.hardware.faketouch , they:

e [C-1-1] MUST report the absolute X and Y screen positions of the pointer location and
display a visual pointer on the screen.

e [C-1-2] MUST report touch event with the action code that specifies the state change that
occurs on the pointer going down or up on the screen.

e [C-1-3] MUST support pointer down and up on an object on the screen, which allows users
to emulate tap on an object on the screen.

e [C-1-4] MUST support pointer down, pointer up, pointer down then pointer up in the same
place on an object on the screen within a time threshold, which allows users to emulate
double tap on an object on the screen.

e [C-1-5] MUST support pointer down on an arbitrary point on the screen, pointer move to
any other arbitrary point on the screen, followed by a pointer up, which allows users to
emulate a touch drag.

e [C-1-6] MUST support pointer down then allow users to quickly move the object to a
different position on the screen and then pointer up on the screen, which allows users to
fling an object on the screen.

e [C-1-7] MUST report TOUCHSCREEN _NOTOUCH for the Configuration.touchscreen API
field.

If device implementations declare support for android.hardware.faketouch.multitouch.distinct , they:

e [C-2-1] MUST declare support for android.hardware.faketouch .
e [C-2-2] MUST support distinct tracking of two or more independent pointer inputs.

If device implementations declare support for android.hardware.faketouch.multitouch.jazzhand , they:

e [C-3-1] MUST declare support for android.hardware.faketouch .

e [C-3-2] MUST support distinct tracking of 5 (tracking a hand of fingers) or more pointer
inputs fully independently.

7.2.6. Game Controller Support
7.2.6.1. Button Mappings

If device implementations declare the android.hardware.gamepad feature flag, they:

e [C-1-1] MUST have embed a controller or ship with a separate controller in the box, that
would provide means to input all the events listed in the below tables.

e [C-1-2] MUST be capable to map HID events to it's associated Android view.InputEvent
constants as listed in the below tables. The upstream Android implementation includes
implementation for game controllers that satisfies this requirement.

Button HID Usage 2 Android Button

Al 0x09 0x0001 KEYCODE_BUTTON_A (96)
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B! 0x09 0x0002 KEYCODE_BUTTON_B (97)
). & 0x09 0x0004 KEYCODE_BUTTON_X (99)
Y’ 0x09 0x0005 KEYCODE_BUTTON_Y (100)
%‘):ﬁsv]\m ; 0x01 0x0039 3 AXIS_HAT Y*

%%:1 0x01 0x0039 3 AXIS_HAT X *

Left shoulder button '

0x09 0x0007

KEYCODE_BUTTON_L1 (102)

Right shoulder button

0x09 0x0008

KEYCODE_BUTTON_R1 (103)

Left stick click !

0x09 0x000E

KEYCODE_BUTTON_THUMBL (106)

Right stick click

0x09 0x000F

KEYCODE_BUTTON_THUMBR (107)

Home" 0x0c 0x0223 KEYCODE_HOME (3)
Back'’ 0x0c 0x0224 KEYCODE_BACK (4)
1 KeyEvent

2 The above HID usages MUST be declared within a Game pad CA (0x01 0x0005).

3 This usage MUST have a Logical Minimum of 0, a Logical Maximum of 7, a Physical Minimum of 0, a
Physical Maximum of 315, Units in Degrees, and a Report Size of 4. The logical value is defined to be the

clockwise rotation away from the vertical axis; for example, a logical value of 0 represents no rotation and the
up button being pressed, while a logical value of 1 represents a rotation of 45 degrees and both the up and left

keys being pressed.
4 MotionEvent

Analog Controls ' HID Usage Android Button
Left Trigger 0x02 0x00C5 AXIS_LTRIGGER
Right Trigger 0x02 0x00C4 AXIS_RTRIGGER
. 0x01 0x0030 AXIS_X
Left Joystick 0x01 0x0031 AXIS_Y
tp— omom e

1 MotionEvent

7.2.7. Remote Control

See Section 2.3.1 for device-specific requirements.

7.3. Sensors

If device implementations include a particular sensor type that has a corresponding API for third-
party developers, the device implementation MUST implement that API as described in the Android
SDK documentation and the Android Open Source documentation on sensors .

Device implementations:

e [C-0-1] MUST accurately report the presence or absence of sensors per the
android.content.pm.PackageManager class.

e [C-0-2] MUST return an accurate list of supported sensors via the
SensorManager.getSensorList() and similar methods.

e [C-0-3] MUST behave reasonably for all other sensor APIs (for example, by returningtrue
or false as appropriate when applications attempt to register listeners, not calling sensor
listeners when the corresponding sensors are not present; etc.).

If device implementations include a particular sensor type that has a corresponding API for third-

party developers, they:

e [C-1-1] MUST report all sensor measurements using the relevant International System of

Units (metric) values for each sensor type as defined in the Android SDK documentation.

android
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[C-1-2] MUST report sensor data with a maximum latency of 100 milliseconds + 2 *
sample_time for the case of a sensor stream with a maximum requested latency of 0 ms
when the application processor is active. This delay does not include any filtering delays.
e [C-1-3] MUST report the first sensor sample within 400 milliseconds + 2 * sample_time of
the sensor being activated. It is acceptable for this sample to have an accuracy of 0.

e [SR] SHOULD report the event time in nanoseconds as defined in the Android SDK
documentation, representing the time the event happened and synchronized with the
SystemClock.elapsedRealtimeNano() clock. Existing and new Android devices are
STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade to
the future platform releases where this might become a REQUIRED component. The
synchronization error SHOULD be below 100 milliseconds.

e [C-1-4] For any API indicated by the Android SDK documentation to be a continuous
sensor , device implementations MUST continuously provide periodic data samples that
SHOULD have a jitter below 3%, where jitter is defined as the standard deviation of the
difference of the reported timestamp values between consecutive events.

e [C-1-5] MUST ensure that the sensor event stream MUST NOT prevent the device CPU
from entering a suspend state or waking up from a suspend state.

e When several sensors are activated, the power consumption SHOULD NOT exceed the
sum of the individual sensor’s reported power consumption.

The list above is not comprehensive; the documented behavior of the Android SDK and the Android
Open Source Documentations on sensors is to be considered authoritative.

Some sensor types are composite, meaning they can be derived from data provided by one or more
other sensors. (Examples include the orientation sensor and the linear acceleration sensor.)

Device implementations:

e SHOULD implement these sensor types, when they include the prerequisite physical
sensors as described in sensor types .

If device implementations include a composite sensor, they:

e [C-2-1] MUST implement the sensor as described in the Android Open Source
documentation on composite sensors .

7.3.1. Accelerometer

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If device implementations include a 3-axis accelerometer, they:

e [C-1-1] MUST be able to report events up to a frequency of at least 50 Hz.

[C-1-2] MUST implement and report TYPE_ACCELEROMETER sensor.

[C-1-3] MUST comply with the Android sensor coordinate system as detailed in the

Android APIs.

e [C-1-4] MUST be capable of measuring from freefall up to four times the gravity(4g) or
more on any axis.

e [C-1-5] MUST have a resolution of at least 12-bits.

e [C-1-6] MUST have a standard deviation no greater than 0.05 m/s*, where the standard
deviation SHOULD be calculated on a per axis basis on samples collected over a period of
at least 3 seconds at the fastest sampling rate.

e [SR] are STRONGLY RECOMMENDED to implement the TYPE_SIGNIFICANT MOTION
composite sensor.

e [SR] are STRONGLY RECOMMENDED to implement and report [

TYPE ACCELEROMETER UNCALIBRATED ]
(https://developer.android.com/reference/android/hardware/Sensor.html#STRING_TYPE_ACCELEROMETER_UNCALIBRATED)
sensor. Android devices are STRONGLY RECOMMENDED to meet this requirement so they

will be able to upgrade to the future platform release where this might become REQUIRED.

e SHOULD implement the TYPE SIGNIFICANT MOTION, TYPE TILT DETECTOR,
TYPE STEP DETECTOR, TYPE STEP COUNTER composite sensors as described in the
Android SDK document.

e SHOULD report events up to at least 200 Hz.

e SHOULD have a resolution of at least 16-bits.
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e SHOULD be calibrated while in use if the characteristics changes over the life cycle and
compensated, and preserve the compensation parameters between device reboots.

e SHOULD be temperature compensated.

If device implementations include a 3-axis accelerometer and any of the
TYPE SIGNIFICANT MOTION, TYPE TILT DETECTOR, TYPE STEP DETECTOR,
TYPE_STEP_COUNTER composite sensors are implemented:

e [C-2-1] The sum of their power consumption MUST always be less than 4 mW.

e SHOULD each be below 2 mW and 0.5 mW for when the device is in a dynamic or static
condition.

If device implementations include a 3-axis accelerometer and a 3-axis gyroscope sensor, they:

e [C-3-1] MUST implement the TYPE_GRAVITY and TYPE LINEAR ACCELERATION
composite sensors.

e [C-SR] Are STRONGLY RECOMMENDED to implement the
TYPE _GAME ROTATION_VECTOR composite sensor.

If device implementations include a 3-axis accelerometer, a 3-axis gyroscope sensor, and a
magnetometer sensor, they:

e [C-4-1] MUST implement aTYPE_ROTATION_VECTOR composite sensor.

7.3.2. Magnetometer

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to include a 3-axis magnetometer (compass).

If device implementations include a 3-axis magnetometer, they:

e [C-1-1] MUST implement the TYPE_ MAGNETIC_FIELD sensor.

[C-1-2] MUST be able to report events up to a frequency of at least 10 Hz and SHOULD

report events up to at least 50 Hz.

e [C-1-3] MUST comply with the Android sensor coordinate system as detailed in the
Android APIs.

e [C-1-4] MUST be capable of measuring between -900 pT and +900 pT on each axis before
saturating.

e [C-1-5] MUST have a hard iron offset value less than 700 uT and SHOULD have a value
below 200 pT, by placing the magnetometer far from dynamic (current-induced) and
static (magnet-induced) magnetic fields.

e [C-1-6] MUST have a resolution equal or denser than 0.6 pT.

e [C-1-7] MUST support online calibration and compensation of the hard iron bias, and
preserve the compensation parameters between device reboots.

e [C-1-8] MUST have the soft iron compensation applied—the calibration can be done either
while in use or during the production of the device.

e [C-1-9] MUST have a standard deviation, calculated on a per axis basis on samples
collected over a period of at least 3 seconds at the fastest sampling rate, no greater than
1.5 pT; SHOULD have a standard deviation no greater than 0.5 pT.

e SHOULD implement TYPE_ MAGNETIC FIELD UNCALIBRATED sensor.

e [SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement the
TYPE _MAGNETIC_FIELD UNCALIBRATED sensor.

If device implementations include a 3-axis magnetometer, an accelerometer sensor, and a 3-axis
gyroscope sensor, they:

e [C-2-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

If device implementations include a 3-axis magnetometer, an accelerometer, they:

e MAY implement the TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor.

If device implementations include a 3-axis magnetometer, an accelerometer and
TYPE_ GEOMAGNETIC ROTATION_ VECTOR sensor, they:
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e [C-3-1] MUST consume less than 10 mW.
e SHOULD consume less than 3 mW when the sensor is registered for batch mode at 10 Hz.

7.3.3. GPS

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to include a GPS/GNSS receiver.

If device implementations include a GPS/GNSS receiver and report the capability to applications
through the android.hardware.location.gps feature flag, they:

e [C-1-1] MUST support location outputs at a rate of at least 1 Hz when requested via
LocationManager#requestLocationUpdate .

e [C-1-2] MUST be able to determine the location in open-sky conditions (strong signals,
negligible multipath, HDOP < 2) within 10 seconds (fast time to first fix), when connected
to a 0.5 Mbps or faster data speed internet connection. This requirement is typically met
by the use of some form of Assisted or Predicted GPS/GNSS technique to minimize
GPS/GNSS lock-on time (Assistance data includes Reference Time, Reference Location
and Satellite Ephemeris/Clock).

o [C-1-6] After making such a location calculation, device implementations
MUST determine its location, in open sky, within 5 seconds, when location
requests are restarted, up to an hour after the initial location calculation, even
when the subsequent request is made without a data connection, and/or after
a power cycle.

¢ In open sky conditions after determining the location, while stationary or moving with less
than 1 meter per second squared of acceleration:

o [C-1-3] MUST be able to determine location within 20 meters, and speed within
0.5 meters per second, at least 95% of the time.

o [C-1-4] MUST simultaneously track and report via GnssStatus.Callback at least 8
satellites from one constellation.

o SHOULD be able to simultaneously track at least 24 satellites, from multiple
constellations (e.g. GPS + at least one of Glonass, Beidou, Galileo).

o [C-SR] Are STRONGLY RECOMMENDED to continue to deliver normal
GPS/GNSS location outputs through GNSS Location Provider APIs during an
emergency phone call.

o [C-SR] Are STRONGLY RECOMMENDED to report GNSS measurements from all
constellations tracked (as reported in GnssStatus messages), with the
exception of SBAS.

o [C-SR] Are STRONGLY RECOMMENDED to report AGC, and Frequency of GNSS
measurement.

o [C-SR] Are STRONGLY RECOMMENDED to report all accuracy estimates
(including Bearing, Speed, and Vertical) as part of each GPS/GNSS location.

o [C-SR] Are STRONGLY RECOMMENDED to report GNSS measurements, as
soon as they are found, even if a location calculated from GPS/GNSS is not yet
reported.

o [C-SR] Are STRONGLY RECOMMENDED to report GNSS pseudoranges and
pseudorange rates, that, in open-sky conditions after determining the location,
while stationary or moving with less than 0.2 meter per second squared of
acceleration, are sufficient to calculate position within 20 meters, and speed
within 0.2 meters per second, at least 95% of the time.

7.3.4. Gyroscope

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to include a gyroscope sensor unless a 3-axis
accelerometer is also included.

If device implementations include a 3-axis gyroscope, they:

e [C-1-1] MUST be able to report events up to a frequency of at least 50 Hz.

e [C-1-2] MUST implement the TYPE_GYROSCOPE sensor and are STRONGLY
RECOMMENDED to also implement the TYPE_ GYROSCOPE_UNCALIBRATED sensor.

e [C-1-4] MUST have a resolution of 12-bits or more and SHOULD have a resolution of 16-
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bits or more.

e [C-1-5] MUST be temperature compensated.

e [C-1-6] MUST be calibrated and compensated while in use, and preserve the
compensation parameters between device reboots.

e [C-1-7] MUST have a variance no greater than 1e-7 rad*2 / s*2 per Hz (variance per Hz, or
rad*2 / s). The variance is allowed to vary with the sampling rate, but MUST be
constrained by this value. In other words, if you measure the variance of the gyro at 1 Hz
sampling rate it SHOULD be no greater than 1e-7 rad*2/s*2.

e [SR] Calibration error is STRONGLY RECOMMENDED to be less than 0.01 rad/s when
device is stationary at room temperature.

e SHOULD report events up to at least 200 Hz.

If device implementations include a 3-axis gyroscope, an accelerometer sensor and a magnetometer
sensor, they:

e [C-2-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

If device implementations include a 3-axis accelerometer and a 3-axis gyroscope sensor, they:

e [C-3-1] MUST implement the TYPE_GRAVITY and TYPE LINEAR ACCELERATION
composite sensors.

e [C-SR] Are STRONGLY RECOMMENDED to implement the
TYPE GAME ROTATION VECTOR composite sensor.

7.3.5. Barometer

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to include a barometer (ambient air pressure
sensor).

If device implementations include a barometer, they:

[C-1-1] MUST implement and report TYPE_PRESSURE sensor.
[C-1-2] MUST be able to deliver events at 5 Hz or greater.
[C-1-3] MUST be temperature compensated.

[SR] STRONGLY RECOMMENDED to be able to report pressure measurements in the range
300hPa to 1100hPa.

SHOULD have an absolute accuracy of 1ThPa.
e SHOULD have a relative accuracy of 0.12hPa over 20hPa range (equivalent to ~1m
accuracy over ~200m change at sea level).

7.3.6. Thermometer

Device implementations:

e MAY include an ambient thermometer (temperature sensor).
e MAY but SHOULD NOT include a CPU temperature sensor.

If device implementations include an ambient thermometer (temperature sensor), they:

e [C-1-1] MUST be defined as SENSOR_TYPE_AMBIENT _TEMPERATURE and MUST
measure the ambient (room/vehicle cabin) temperature from where the user is interacting
with the device in degrees Celsius.

e [C-1-2] MUST be defined as SENSOR_TYPE_TEMPERATURE .

e [C-1-3] MUST measure the temperature of the device CPU.

e [C-1-4] MUST NOT measure any other temperature.

Note the SENSOR TYPE TEMPERATURE sensor type was deprecated in Android 4.0.

7.3.7. Photometer

¢ Device implementations MAY include a photometer (ambient light sensor).
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7.3.8. Proximity Sensor

e Device implementations MAY include a proximity sensor.

If device implementations include a proximity sensor, they:

e [C-1-1] MUST measure the proximity of an object in the same direction as the screen. That
is, the proximity sensor MUST be oriented to detect objects close to the screen, as the
primary intent of this sensor type is to detect a phone in use by the user. If device
implementations include a proximity sensor with any other orientation, it MUST NOT be
accessible through this API.

e [C-1-2] MUST have 1-bit of accuracy or more.

7.3.9. High Fidelity Sensors

If device implementations include a set of higher quality sensors as defined in this section, and make
available them to third-party apps, they:

e [C-1-1] MUST identify the capability through the android.hardware.sensor.hifi_sensors feature
flag.

If device implementations declare android.hardware.sensor.hifi_sensors , they:

e [C-2-1] MUST have a TYPE_ACCELEROMETER sensor which:

o

MUST have a measurement range between at least -8g and +8g, SHOULD have
a measurement range between at least -16g and +16g.

MUST have a measurement resolution of at least 2048 LSB/g.

MUST have a minimum measurement frequency of 12.5 Hz or lower.

MUST have a maximum measurement frequency of 400 Hz or higher; SHOULD
support the SensorDirectChannel RATE_VERY_ FAST .

MUST have a measurement noise not above 400 pg/vHz.

MUST implement a non-wake-up form of this sensor with a buffering
capability of at least 3000 sensor events.

MUST have a batching power consumption not worse than 3 mW.

[C-SR] Is STRONGLY RECOMMENDED to have 3dB measurement bandwidth of
at least 80% of Nyquist frequency, and white noise spectrum within this
bandwidth.

SHOULD have an acceleration random walk less than 30 pg vHz tested at
room temperature.

SHOULD have a bias change vs. temperature of < +/- 1 mg/°C.

SHOULD have a best-fit line non-linearity of < 0.5%, and sensitivity change vs.
temperature of < 0.03%/C°.

SHOULD have cross-axis sensitivity of < 2.5 % and variation of cross-axis
sensitivity < 0.2% in device operation temperature range.

e [C-2-2] MUST have a TYPE_ACCELEROMETER_UNCALIBRATED with the same quality
requirements as TYPE_ACCELEROMETER .

e [C-2-3] MUST have a TYPE_GYROSCOPE sensor which:

o

o

o

o

MUST have a measurement range between at least -1000 and +1000 dps.
MUST have a measurement resolution of at least 16 LSB/dps.
MUST have a minimum measurement frequency of 12.5 Hz or lower.

MUST have a maximum measurement frequency of 400 Hz or higher; SHOULD
support the SensorDirectChannel RATE_VERY_FAST .

MUST have a measurement noise not above 0.014°/s/vHz.

[C-SR] Is STRONGLY RECOMMENDED to have 3dB measurement bandwidth of
at least 80% of Nyquist frequency, and white noise spectrum within this
bandwidth.

SHOULD have a rate random walk less than 0.001 °/s vHz tested at room
temperature.

SHOULD have a bias change vs. temperature of < +/- 0.05°/ s/ °C.

SHOULD have a sensitivity change vs. temperature of < 0.02% / °C.

SHOULD have a best-fit line non-linearity of < 0.2%.

SHOULD have a noise density of < 0.007 °/s/vHz.

SHOULD have calibration error less than 0.002 rad/s in temperature range 10
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~ 40 °C when device is stationary.
o SHOULD have g-sensitivity less than 0.1°/s/g.

o SHOULD have cross-axis sensitivity of < 4.0 % and cross-axis sensitivity
variation < 0.3% in device operation temperature range.

[C-2-4] MUST have a TYPE_GYROSCOPE_UNCALIBRATED with the same quality
requirements as TYPE_GYROSCOPE .
[C-2-5] MUST have a TYPE_GEOMAGNETIC_FIELD sensor which:

o MUST have a measurement range between at least -900 and +900 pT.

o MUST have a measurement resolution of at least 5 LSB/uT.

o MUST have a minimum measurement frequency of 5 Hz or lower.

o MUST have a maximum measurement frequency of 50 Hz or higher.

o MUST have a measurement noise not above 0.5 uT.

[C-2-6] MUST have a TYPE MAGNETIC FIELD UNCALIBRATED with the same quality
requirements as TYPE_ GEOMAGNETIC FIELD and in addition:

o MUST implement a non-wake-up form of this sensor with a buffering
capability of at least 600 sensor events.

o [C-SR] Is STRONGLY RECOMMENDED to have white noise spectrum from 1 Hz
to at least 10 Hz when the report rate is 50 Hz or higher.

[C-2-7] MUST have a TYPE_PRESSURE sensor which:
o MUST have a measurement range between at least 300 and 1100 hPa.
o MUST have a measurement resolution of at least 80 LSB/hPa.
o MUST have a minimum measurement frequency of 1 Hz or lower.
o MUST have a maximum measurement frequency of 10 Hz or higher.
o MUST have a measurement noise not above 2 Pa/vHz.
o MUST implement a non-wake-up form of this sensor with a buffering
capability of at least 300 sensor events.
o MUST have a batching power consumption not worse than 2 mW.
[C-2-8] MUST have a TYPE_GAME_ROTATION_VECTOR sensor.
[C-2-9] MUST have a TYPE_SIGNIFICANT MOTION sensor which:
o MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.
[C-2-10] MUST have a TYPE_STEP_DETECTOR sensor which:

o MUST implement a non-wake-up form of this sensor with a buffering
capability of at least 100 sensor events.

o MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.
o MUST have a batching power consumption not worse than 4 mW.
[C-2-11] MUST have a TYPE_STEP_COUNTER sensor which:
o MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.
[C-2-12] MUST have a TILT DETECTOR sensor which:
o MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

[C-2-13] The event timestamp of the same physical event reported by the Accelerometer,
Gyroscope, and Magnetometer MUST be within 2.5 milliseconds of each other. The event
timestamp of the same physical event reported by the Accelerometer and Gyroscope
SHOULD be within 0.25 milliseconds of each other.

[C-2-14] MUST have Gyroscope sensor event timestamps on the same time base as the
camera subsystem and within 1 milliseconds of error.

[C-2-15] MUST deliver samples to applications within 5 milliseconds from the time when
the data is available on any of the above physical sensors to the application.

[C-2-16] MUST NOT have a power consumption higher than 0.5 mW when device is static
and 2.0 mW when device is moving when any combination of the following sensors are
enabled:

o SENSOR _TYPE SIGNIFICANT MOTION

o SENSOR _TYPE STEP DETECTOR

o SENSOR TYPE STEP COUNTER

o SENSOR TILT DETECTORS
[C-2-17] MAY have a TYPE_PROXIMITY sensor, but if present MUST have a minimum
buffer capability of 100 sensor events.
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Note that all power consumption requirements in this section do not include the power consumption
of the Application Processor. It is inclusive of the power drawn by the entire sensor chain—the
sensor, any supporting circuitry, any dedicated sensor processing system, etc.

If device implementations include direct sensor support, they:

e [C-3-1] MUST correctly declare support of direct channel types and direct report rates
level through the isDirectChannel TypeSupported and getHighestDirectReportRateLevel API.

e [C-3-2] MUST support at least one of the two sensor direct channel types for all sensors
that declare support for sensor direct channel.
o TYPE HARDWARE BUFFER
o TYPE MEMORY_FILE
e SHOULD support event reporting through sensor direct channel for primary sensor (non-
wakeup variant) of the following types:
o TYPE ACCELEROMETER
o TYPE ACCELEROMETER UNCALIBRATED
o TYPE GYROSCOPE
o TYPE GYROSCOPE UNCALIBRATED
o TYPE MAGNETIC FIELD
o TYPE MAGNETIC FIELD UNCALIBRATED

7.3.10. Biometric Sensors

For additional background on Measuring Biometric Unlock Security, please see Measuring Biometric
Security documentation .

If device implementations include a secure lock screen, they:

e SHOULD include a biometric sensor

Biometric sensors can be classified as Strong, Weak , or Convenience based on their spoof and
imposter acceptance rates, and on the security of the biometric pipeline. This classification
determines the capabilities the biometric sensor has to interface with the platform and with third-
party applications. Sensors are classified as Convenience by default, and need to meet additional
requirements as detailed below if they wish to be classified as either Weak or Strong . Both Weak and
Strong biometrics get additional capabilities as detailed below.

To make a biometric sensor available to third-party applications, device implementations:

e [C-0-1] MUST meet the requirements for Strong or Weak biometric as defined in this
document.

To allow access to keystore keys to third-party applications, device implementations:

e [C-0-2] MUST meet the requirements for Strong as defined in this document.

Additionally:

e [C-0-3] MUST be paired with an explicit confirm action (e.g. a button press) if thatStrong
biometric is passive (e.g. face or iris where no explicit signal of the user's intent exists).
o [C-SR] The confirm action for passive biometrics is STRONGLY

RECOMMENDED to be secured such that an operating system or kernel
compromise cannot spoof it. For example, this means that the confirm action
based on a physical button is routed through an input-only general-purpose
input/output (GPIO) pin of a secure element (SE) that cannot be driven by any
other means than a physical button press.

If device implementations wish to treat a biometric sensor as Convenience , they:

[C-1-1] MUST have a false acceptance rate less than 0.002%.

[C-1-2] MUST disclose that this mode may be less secure than a strong PIN, pattern, or
password and clearly enumerate the risks of enabling it, if the spoof and imposter
acceptance rates are higher than 7%.

[C-1-3] MUST rate limit attempts for at least 30 seconds after five false trials for
biometric verification - where a false trial is one with an adequate capture quality (
BIOMETRIC_ACQUIRED _GOOD ) that does not match an enrolled biometric.

[C-1-4] MUST prevent adding new biometrics without first establishing a chain of trust by
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having the user confirm existing or add a new device credential (PIN/pattern/password)
that's secured by TEE; the Android Open Source Project implementation provides the
mechanism in the framework to do so.

[C-1-5] MUST completely remove all identifiable biometric data for a user when the user's
account is removed (including via a factory reset).

[C-1-6] MUST honor the individual flag for that biometric (i.e.
DevicePolicyManager. KEYGUARD DISABLE FINGERPRINT,
DevicePolicymanager KEYGUARD DISABLE FACE, or
DevicePolicymanager. KEYGUARD DISABLE IRIS ).

[C-1-7] MUST challenge the user for the recommended primary authentication (e.g. PIN,
pattern, password) once every 24 hours or less for new devices launching with Android
version 10, once every 72 hours or less for devices upgrading from earlier Android
version.

[C-1-8] MUST challenge the user for the recommended primary authentication (eg: PIN,
pattern, password) after one of the follwing:
o A 4-hour idle timeout period, OR
o 3 failed biometric authentication attempts.
o The idle timeout period and the failed authentication count is reset after any
successful confirmation of the device credentials.

Upgrading devices from an earlier Android version can be exempted from C-1-8.
[C-SR] Are STRONGLY RECOMMENDED to have a false rejection rate of less than 10%, as
measured on the device.

[C-SR] Are STRONGLY RECOMMENDED to have a latency below 1 second, measured from
when the biometric is detected, until the screen is unlocked, for each enrolled biometric.

If device implementations wish to treat a biometric sensor as Weak , they:

[C-2-1] MUST meet all requirements for Convenience above, except for [C-1-2].
[C-2-2] MUST have a spoof and imposter acceptance rate not higher than 20%.
[C-2-3] MUST have a hardware-backed keystore implementation, and perform the
biometric matching in an isolated execution environment outside Android user or kernel
space, such as the Trusted Execution Environment (TEE), or on a chip with a secure
channel to the isolated execution environment.
[C-2-4] MUST have all identifiable data encrypted and cryptographically authenticated
such that they cannot be acquired, read or altered outside of the isolated execution
environment or a chip with a secure channel to the isolated execution environment as
documented in the implementation guidelines on the Android Open Source Project site.
[C-2-5] For camera based biometrics, while biometric based authentication or enrollment
is happening:
o MUST operate the camera in a mode that prevents camera frames from being
read or altered outside the isolated execution environment or a chip with a
secure channel to the isolated execution environment.
o For RGB single-camera solutions, the camera frames CAN be readable outside
the isolated execution environment to support operations such as preview for
enrollment, but MUST still NOT be alterable.
[C-2-6] MUST NOT enable third-party applications to distinguish between individual
biometric enrollments.
[C-2-7] MUST NOT allow unencrypted access to identifiable biometric data or any data
derived from it (such as embeddings) to the Application Processor outside the context of
the TEE.

[C-2-8] MUST have a secure processing pipeline such that an operating system or kernel
compromise cannot allow data to be directly injected to falsely authenticate as the user.
If device implementations are already launched on an earlier Android version and cannot

meet the requirement C-2-8 through a system software update, they MAY be exempted
from the requirement.

If device implementations wish to treat a biometric sensor as Strong, they:

[C-3-1] MUST meet all the requirements of Weak above. Upgrading devices from an earlier
Android version is not exempted from C-2-7.
[C-3-2] MUST have a spoof and imposter acceptance rate not higher than 7%.

[C-3-3] MUST challenge the user for the recommended primary authentication (e.g. PIN,
pattern, password) once every 72 hours or less.

Page 90 of 126


https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_FINGERPRINT
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_FACE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_IRIS
https://source.android.com/security/biometric#hal-implementation

7.3.12. Pose Sensor
Device implementations:
o MAY support pose sensor with 6 degrees of freedom.

If device implementations support pose sensor with 6 degrees of freedom, they:

e [C-1-1] MUST implement and report TYPE_POSE_6DOF sensor.
e [C-1-2] MUST be more accurate than the rotation vector alone.

7.4. Data Connectivity

7.4.1. Telephony

“Telephony” as used by the Android APIs and this document refers specifically to hardware related to
placing voice calls and sending SMS messages via a GSM or CDMA network. While these voice calls
may or may not be packet-switched, they are for the purposes of Android considered independent of
any data connectivity that may be implemented using the same network. In other words, the Android

“telephony” functionality and APIs refer specifically to voice calls and SMS. For instance, device
implementations that cannot place calls or send/receive SMS messages are not considered a
telephony device, regardless of whether they use a cellular network for data connectivity.

e Android MAY be used on devices that do not include telephony hardware. That is, Android
is compatible with devices that are not phones.

If device implementations include GSM or CDMA telephony, they:

e [C-1-1] MUST declare the android.hardware.telephony feature flag and other sub-feature
flags according to the technology.

e [C-1-2] MUST implement full support for the API for that technology.

If device implementations do not include telephony hardware, they:

e [C-2-1] MUST implement the full APIs as no-ops.

If device implementations support eUICCs or eSIMs/embedded SIMs and include a proprietary
mechanism to make eSIM functionality available for third-party developers, they:

e [C-3-1] MUST provide a complete implementation of the EuiccManager API .
7.4.1.1. Number Blocking Compatibility

If device implementations report the android.hardware.telephony feature , they:

[C-1-1] MUST include number blocking support

[C-1-2] MUST fully implement BlockedNumberContract and the corresponding API as

described in the SDK documentation.

e [C-1-3] MUST block all calls and messages from a phone number in
'‘BlockedNumberProvider' without any interaction with apps. The only exception is when
number blocking is temporarily lifted as described in the SDK documentation.

e [C-1-4] MUST NOT write to the platform call log provider for a blocked call.

e [C-1-5] MUST NOT write to the Telephony provider for a blocked message.

e [C-1-6] MUST implement a blocked numbers management Ul, which is opened with the
intent returned by TelecomManager.createManageBlockedNumbersIntent() method.

e [C-1-7] MUST NOT allow secondary users to view or edit the blocked numbers on the
device as the Android platform assumes the primary user to have full control of the
telephony services, a single instance, on the device. All blocking related Ul MUST be
hidden for secondary users and the blocked list MUST still be respected.

e SHOULD migrate the blocked numbers into the provider when a device updates to Android

7.0.

7.4.1.2. Telecom API
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If device implementations report android.hardware.telephony , they:

[C-1-1] MUST support the ConnectionService APIs described in the SDK .

[C-1-2] MUST display a new incoming call and provide user affordance to accept or reject
the incoming call when the user is on an ongoing call that is made by a third-party app that
does not support the hold feature specified via CAPABILITY_SUPPORT HOLD .

[C-1-3] MUST have an application that implements InCallService .

[C-SR] Are STRONGLY RECOMMENDED to notify the user that answering an incoming call
will drop an ongoing call.

The AOSP implementation meets these requirements by a heads-up notification which
indicates to the user that answering an incoming call will cause the other call to be
dropped.

[C-SR] Are STRONGLY RECOMMENDED to preload the default dialer app that shows a call
log entry and the name of a third-party app in its call log when the third-party app sets the
EXTRA_LOG_SELF_MANAGED_CALLS extras key on its PhoneAccount to true .
[C-SR] Are STRONGLY RECOMMENDED to handle the audio headset's
KEYCODE MEDIA PLAY PAUSE and KEYCODE HEADSETHOOK events for the
android.telecom APls as below:
o Call Connection.onDisconnect() when a short press of the key event is detected
during an ongoing call.
o Call Connection.onAnswer() when a short press of the key event is detected
during an incoming call.
o Call Connection.onReject() when a long press of the key event is detected during
an incoming call.
o Toggle the mute status of the CallAudioState .

7.4.2. IEEE 802.11 (Wi-Fi)

Device implementations:

If device implementations include support for 802.11 and expose the functionality to a third-party

SHOULD include support for one or more forms of 802.11.

application, they:

[C-1-1] MUST implement the corresponding Android API.
[C-1-2] MUST report the hardware feature flag android.hardware.wifi .
[C-1-3] MUST implement the multicast AP| as described in the SDK documentation.
[C-1-4] MUST support multicast DNS (mDNS) and MUST NOT filter mDNS packets
(224.0.0.251) at any time of operation including:

o Even when the screen is not in an active state.

o For Android Television device implementations, even when in standby power

states.

[C-1-5] MUST NOT treat the WifiManager.enableNetwork() API method call as a sufficient
indication to switch the currently active Network that is used by default for application
traffic and is returned by ConnectivityManager APl methods such as getActiveNetwork and
registerDefaultNetworkCallback . In other words, they MAY only disable the Internet access
provided by any other network provider (e.g. mobile data) if they successfully validate that
the Wi-Fi network is providing Internet access.
[C-1-6] Are STRONGLY RECOMMENDED to, when the
ConnectivityManager.reportNetworkConnectivity() APl method is called, re-evaluate the
Internet access on the Network and, once the evaluation determines that the current
Network no longer provides Internet access, switch to any other available network (e.g.
mobile data) that provides Internet access.
[C-SR] Are STRONGLY RECOMMENDED to randomize the source MAC address and
sequence number of probe request frames, once at the beginning of each scan, while STA
is disconnected.
o Each group of probe request frames comprising one scan SHOULD use one
consistent MAC address (SHOULD NOT randomize MAC address halfway
through a scan).
o Probe request sequence number SHOULD iterate as normal (sequentially)
between the probe requests in a scan.
o Probe request sequence number SHOULD randomize between the last probe
request of a scan and the first probe request of the next scan.
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e [C-SR] Are STRONGLY RECOMMENDED, while STA is disconnected, to allow only the
following elements in probe request frames:
o SSID Parameter Set (0)
o DS Parameter Set (3)

If device implementations include support for Wi-Fi power save mode as defined in IEEE 802.11
standard, they:

e [C-3-1] MUST turn off Wi-Fi power save mode whenever an app acquires
WIFI_ MODE FULL HIGH PERF lock or WIFI MODE FULL LOW LATENCY lock via
WifiManager.createWifiLock() and WifiManager.WifiLock.acquire() APIs and the lock is
active.

e [C-3-2] The average round trip latency between the device and an access point while the
device is in a Wi-Fi Low Latency Lock ( WIFI MODE FULL LOW_LATENCY ) mode
MUST be smaller than the latency during a Wi-Fi High Perf Lock (

WIFI MODE_FULL HIGH PERF ) mode.

e [C-SR] Are STRONGLY RECOMMENDED to minimize Wi-Fi round trip latency whenever a

Low Latency Lock ( WIFI_ MODE_FULL_LOW_LATENCY ) is acquired and takes effect.

If device implementations support Wi-Fi and use Wi-Fi for location scanning, they:

e [C-2-1] MUST provide a user affordance to enable/disable the value read through the
WifiManager.isScanAlwaysAvailable APl method.

7.4.2.1. Wi-Fi Direct

Device implementations:

e SHOULD include support for Wi-Fi Direct (Wi-Fi peer-to-peer).

If device implementations include support for Wi-Fi Direct, they:

e [C-1-1] MUST implement the corresponding Android API as described in the SDK
documentation.

e [C-1-2] MUST report the hardware feature android.hardware.wifi.direct .
e [C-1-3] MUST support regular Wi-Fi operation.
e [C-1-4] MUST support Wi-Fi and Wi-Fi Direct operations concurrently.

7.4.2.2. Wi-Fi Tunneled Direct Link Setup

Device implementations:

e SHOULD include support for Wi-Fi Tunneled Direct Link Setup (TDLS) as described in the
Android SDK Documentation.

If device implementations include support for TDLS and TDLS is enabled by the WiFiManager API,
they:

e [C-1-1] MUST declare support for TDLS through [ WifiManager.isTdlsSupported ]
(https://developer.android.com/reference/android/net/wifi/WifiManager.html#isTdlsSupported%28%29).
e SHOULD use TDLS only when it is possible AND beneficial.

e SHOULD have some heuristic and NOT use TDLS when its performance might be worse
than going through the Wi-Fi access point.

7.4.2.3. Wi-Fi Aware
Device implementations:
e SHOULD include support for Wi-Fi Aware .

If device implementations include support for Wi-Fi Aware and expose the functionality to third-party
apps, then they:

e [C-1-1] MUST implement the WifiAwareManager APIs as described in the SDK
documentation .
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e [C-1-2] MUST declare the android.hardware.wifi.aware feature flag.
e [C-1-3] MUST support Wi-Fi and Wi-Fi Aware operations concurrently.

e [C-1-4] MUST randomize the Wi-Fi Aware management interface address at intervals no
longer than 30 minutes and whenever Wi-Fi Aware is enabled.

If device implementations include support for Wi-Fi Aware and Wi-Fi Location as described in Section
7.4.2.5 and exposes these functionalities to third-party apps, then they:

e [C-2-1] MUST implement the location-aware discovery APIs: setRangingEnabled ,
setMinDistanceMm , setMaxDistanceMm , and onServiceDiscoveredWithinRange .

7.4.2.4. Wi-Fi Passpoint

Device implementations:

e SHOULD include support for Wi-Fi Passpoint .

If device implementations include support for Wi-Fi Passpoint, they:

e [C-1-1] MUST implement the Passpoint related WifiManager APIs as described in the SDK
documentation .

e [C-1-2] MUST support IEEE 802.11u standard, specifically related to Network Discovery
and Selection, such as Generic Advertisement Service (GAS) and Access Network Query
Protocol (ANQP).

Conversely if device implementations do not include support for Wi-Fi Passpoint:

e [C-2-1] The implementation of the Passpoint related WifiManager APIs MUST throw an
UnsupportedOperationException .

7.4.2.5. Wi-Fi Location (Wi-Fi Round Trip Time - RTT)
Device implementations:
e SHOULD include support for Wi-Fi Location .

If device implementations include support for Wi-Fi Location and expose the functionality to third-
party apps, then they:

e [C-1-1] MUST implement the WifiRttManager APIs as described in the SDK documentation

e [C-1-2] MUST declare the android.hardware.wifi.rtt feature flag.

e [C-1-3] MUST randomize the source MAC address for each RTT burst which is executed
while the Wi-Fi interface on which the RTT is being executed is not associated to an
Access Point.

7.4.2.6. Wi-Fi Keepalive Offload
Device implementations:
e SHOULD include support for Wi-Fi keepalive offload.

If device implementations include support for Wi-Fi keepalive offload and expose the functionality to
third-party apps, they:

e [C-1-1] MUST support the SocketKeepAlive API.

e [C-1-2] MUST support at least three concurrent keepalive slots over Wi-Fi and at least one
keepalive slot over cellular.

If device implementations do not include support for Wi-Fi keepalive offload, they:

e [C-2-1] MUST return ERROR_UNSUPPORTED .

7.4.2.7. Wi-Fi Easy Connect (Device Provisioning Protocol)
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Device implementations:

e SHOULD include support for Wi-Fi Easy Connect (DPP) .

If device implementations include support for Wi-Fi Easy Connect and expose the functionality to
third-party apps, they:

e [C-1-1] MUST implement the Settings#ACTION_PROCESS WIFI_EASY_CONNECT _URI
Intent APlIs as described in the SDK documentation.

e [C-1-2] MUST have the WifiManager#isEasyConnectSupported() method return true .

7.4.3. Bluetooth

If device implementations support Bluetooth Audio profile, they:

e SHOULD support Advanced Audio Codecs and Bluetooth Audio Codecs (e.g. LDAC).

If device implementations support HFP, A2DP and AVRCP, they:

e SHOULD support at least 5 total connected devices.

If device implementations declare android.hardware.vr.high performance feature, they:

e [C-1-1] MUST support Bluetooth 4.2 and Bluetooth LE Data Length Extension.

Android includes support for Bluetooth and Bluetooth Low Energy .

If device implementations include support for Bluetooth and Bluetooth Low Energy, they:

e [C-2-1] MUST declare the relevant platform features (android.hardware.bluetooth and
android.hardware bluetooth_le respectively) and implement the platform APIs.

e SHOULD implement relevant Bluetooth profiles such as A2DP, AVRCP, OBEX, HFP, etc. as
appropriate for the device.

If device implementations include support for Bluetooth Low Energy, they:

e [C-3-1] MUST declare the hardware feature android.hardware.bluetooth_le .

[C-3-2] MUST enable the GATT (generic attribute profile) based Bluetooth APIs as

described in the SDK documentation and android.bluetooth .

e [C-3-3] MUST report the correct value for BluetoothAdapter.isOffloadedFilteringSupported() to
indicate whether the filtering logic for the ScanFilter API classes is implemented.

e [C-3-4] MUST report the correct value for
BluetoothAdapter.isMultipleAdvertisementSupported() to indicate whether Low Energy
Advertising is supported.

e SHOULD support offloading of the filtering logic to the bluetooth chipset when
implementing the ScanFilter API .

e SHOULD support offloading of the batched scanning to the bluetooth chipset.

e SHOULD support multi advertisement with at least 4 slots.

e [SR] STRONGLY RECOMMENDED to implement a Resolvable Private Address (RPA)
timeout no longer than 15 minutes and rotate the address at timeout to protect user
privacy.

If device implementations support Bluetooth LE and use Bluetooth LE for location scanning, they:

e [C-4-1] MUST provide a user affordance to enable/disable the value read through the
System API BluetoothAdapter.isBleScanAlwaysAvailable() .

If device implementations include support for Bluetooth LE and Hearing Aids Profile, as described in
Hearing Aid Audio Support Using Bluetooth LE, they:

e [C-5-1] MUST return true for BluetoothAdapter.getProfileProxy(context, listener,
BluetoothProfile. HEARING_AID) .

7.4.4. Near-Field Communications

Device implementations:

android
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e SHOULD include a transceiver and related hardware for Near-Field Communications
(NFC).

e [C-0-1] MUST implement android.nfc.NdefMessage and android.nfc.NdefRecord APIs even if
they do not include support for NFC or declare the android.hardware.nfc feature as the
classes represent a protocol-independent data representation format.

If device implementations include NFC hardware and plan to make it available to third-party apps,
they:

e [C-1- 1] MUST report the android.hardware.nfc feature from the

e MUST be capable of readlng and wrltlng NDEF messages via the following NFC standards
as below:

e [C-1-2] MUST be capable of acting as an NFC Forum reader/writer (as defined by the NFC
Forum technical specification NFCForum-TS-DigitalProtocol-1.0) via the following NFC
standards:

o NfcA (1IS014443-3A)

NfcB (1S014443-3B)

o NfcF (JIS X 6319-4)

IsoDep (ISO 14443-4)

o NFC Forum Tag Types 1, 2, 3, 4, 5 (defined by the NFC Forum)

e [SR] STRONGLY RECOMMENDED to be capable of reading and writing NDEF messages as
well as raw data via the following NFC standards. Note that while the NFC standards are
stated as STRONGLY RECOMMENDED, the Compatibility Definition for a future version is
planned to change these to MUST. These standards are optional in this version but will be
required in future versions. Existing and new devices that run this version of Android are
VERY STRONGLY ENCOURAGED to meet these requirements now so they will be able to
upgrade to the future platform releases.

o]

o

e [C-1-13] MUST poll for all supported technologies while in NFC discovery mode.

e SHOULD be in NFC discovery mode while the device is awake with the screen active and
the lock-screen unlocked.

e SHOULD be capable of reading the barcode and URL (if encoded) of Thinfilm NFC Barcode
products.

Note that publicly available links are not available for the JIS, ISO, and NFC Forum specifications
cited above.

Android includes support for NFC Host Card Emulation (HCE) mode.

If device implementations include an NFC controller chipset capable of HCE (for NfcA and/or NfcB)
and support Application ID (AID) routing, they:

e [C-2-1] MUST report the android.hardware.nfc.hce feature constant.
e [C-2-2] MUST support NFC HCE APIs as defined in the Android SDK.

If device implementations include an NFC controller chipset capable of HCE for NfcF, and implement
the feature for third-party applications, they:

e [C-3-1] MUST report the android.hardware.nfc.hcef feature constant.
e [C-3-2] MUST implement the NfcF Card Emulation APIs as defined in the Android SDK.

If device implementations include general NFC support as described in this section and support
MIFARE technologies (MIFARE Classic, MIFARE Ultralight, NDEF on MIFARE Classic) in the
reader/writer role, they:

e [C-4-1] MUST implement the corresponding Android APIs as documented by the Android
SDK.

e [C-4-2] MUST report the feature com.nxp.mifare from the
android.content.pm.PackageManager.hasSystemFeature () method. Note that this is not a

standard Android feature and as such does not appear as a constant in the
android.content.pm.PackageManager class.

7.4.5. Minimum Network Capability

Device implementations:
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[C-0-1] MUST include support for one or more forms of data networking. Specifically,
device implementations MUST include support for at least one data standard capable of
200 Kbit/sec or greater. Examples of technologies that satisfy this requirement include
EDGE, HSPA, EV-DO, 802.11g, Ethernet and Bluetooth PAN.

e SHOULD also include support for at least one common wireless data standard, such as
802.11 (Wi-Fi), when a physical networking standard (such as Ethernet) is the primary
data connection.

e MAY implement more than one form of data connectivity.

e [C-0-2] MUST include an IPv6 networking stack and support IPvé communication using
the managed APls, such as java.net.Socket and java.net. URLConnection , as well as the
native APlIs, such as AF_INET6 sockets.

e [C-0-3] MUST enable IPv6 by default.

e MUST ensure that IPv6é communication is as reliable as IPv4, for example:

o [C-0-4] MUST maintain IPv6 connectivity in doze mode.
o [C-0-5] Rate-limiting MUST NOT cause the device to lose IPv6 connectivity on
any IPv6-compliant network that uses RA lifetimes of at least 180 seconds.

e [C-0-6] MUST provide third-party applications with direct IPv6 connectivity to the network

when connected to an IPv6 network, without any form of address or port translation

happening locally on the device. Both managed APIs such as Socket#getlLocalAddress or

Socket#getLocalPort ) and NDK APIs such as getsockname() or IPV6_PKTINFO MUST return

the IP address and port that is actually used to send and receive packets on the network.

The required level of IPv6 support depends on the network type, as shown in the following
requirements.

If device implementations support Wi-Fi, they:

e [C-1-1] MUST support dual-stack and IPv6-only operation on Wi-Fi.
If device implementations support Ethernet, they:

e [C-2-1] MUST support dual-stack operation on Ethernet.

If device implementations support Cellular data, they:

e SHOULD support IPv6 operation (IPv6-only and possibly dual-stack) on cellular.

If device implementations support more than one network type (e.g., Wi-Fi and cellular data), they:

e [C-3-1] MUST simultaneously meet the above requirements on each network when the
device is simultaneously connected to more than one network type.

7.4.6. Sync Settings

Device implementations:

e [C-0-1] MUST have the master auto-sync setting on by default so that the method
getMasterSyncAutomatically() returns “true”.

7.4.7. Data Saver

If device implementations include a metered connection, they are:

e [SR] STRONGLY RECOMMENDED to provide the data saver mode.

If device implementations provide the data saver mode, they:

e [C-1-1] MUST support all the APIs in the ConnectivityManager class as described in the SDK

documentation

e [C-1-2] MUST provide a user interface in the settings, that handles the
Settings. ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS SETTINGS intent,
allowing users to add applications to or remove applications from the whitelist.

If device implementations do not provide the data saver mode, they:

e [C-2-1] MUST return the value RESTRICT BACKGROUND_STATUS DISABLED for

Page 97 of 126


https://developer.android.com/reference/java/net/Socket.html#getLocalAddress%2528%2529
https://developer.android.com/reference/java/net/Socket.html#getLocalPort%2528%2529
http://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/training/basics/network-ops/data-saver.html
https://developer.android.com/reference/android/provider/Settings.html#ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS

ConnectivityManager.getRestrictBackgroundStatus()
e [C-2-2] MUST NOT broadcast
ConnectivityManager. ACTION_RESTRICT BACKGROUND CHANGED .
e [C-2-3] MUST have an activity that handles the
Settings. ACTION_IGNORE BACKGROUND DATA RESTRICTIONS SETTINGS intent but
MAY implement it as a no-op.

7.4.8. Secure Elements

If device implementations support Open Mobile AP| capable secure elements and make them
available to 3rd-party apps, they:

e [C-1-1] MUST enumerate the available Secure Elements readers when

android.se.omapi.SEService.getReaders() method is called.

7.5. Cameras

If device implementations include at least one camera, they:

e [C-1-1] MUST declare the android.hardware.camera.any feature flag.

e [C-1-2] MUST be possible for an application to simultaneously allocate 3 RGBA_8888
bitmaps equal to the size of the images produced by the largest-resolution camera sensor
on the device, while camera is open for the purpose of basic preview and still capture.

e [C-1-3] MUST ensure that the preinstalled default camera application handling intents
MediaStore. ACTION_IMAGE_CAPTURE , MediaStore. ACTION_IMAGE _CAPTURE_SECURE
, or MediaStore. ACTION_VIDEO_CAPTURE, is responsible for removing the user location
in the image metadata before sending it to the receiving application when the receiving
application does not have ACCESS FINE LOCATION .

7.5.1. Rear-Facing Camera

A rear-facing camera is a camera located on the side of the device opposite the display; that is, it
images scenes on the far side of the device, like a traditional camera.

Device implementations:

e SHOULD include a rear-facing camera.

If device implementations include at least one rear-facing camera, they:

e [C-1-1] MUST report the feature flag android.hardware.camera and
android.hardware.camera.any .

e [C-1-2] MUST have a resolution of at least 2 megapixels.

e SHOULD have either hardware auto-focus or software auto-focus implemented in the
camera driver (transparent to application software).

e MAY have fixed-focus or EDOF (extended depth of field) hardware.
e MAY include a flash.

If the camera includes a flash:

e [C-2-1] the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallback
instance has been registered on a Camera preview surface, unless the application has
explicitly enabled the flash by enabling the FLASH_ MODE_AUTO or FLASH MODE_ON
attributes of a Camera.Parameters object. Note that this constraint does not apply to the
device’s built-in system camera application, but only to third-party applications using
Camera.PreviewCallback .

7.5.2. Front-Facing Camera
A front-facing camera is a camera located on the same side of the device as the display; that is, a

camera typically used to image the user, such as for video conferencing and similar applications.
Device implementations:

e MAY include a front-facing camera.

If device implementations include at least one front-facing camera, they:
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[C-1-1] MUST report the feature flag android.hardware.camera.any and

android.hardware.camera.front .

e [C-1-2] MUST have a resolution of at least VGA (640x480 pixels).

e [C-1-3] MUST NOT use a front-facing camera as the default for the Camera APl and MUST
NOT configure the API to treat a front-facing camera as the default rear-facing camera,
even if it is the only camera on the device.

e [C-1-4] The camera preview MUST be mirrored horizontally relative to the orientation
specified by the application when the current application has explicitly requested that the
Camera display be rotated via a call to the android.hardware.Camera.setDisplayOrientation()
method. Conversely, the preview MUST be mirrored along the device’s default horizontal
axis when the current application does not explicitly request that the Camera display be
rotated via a call to the android.hardware.Camera.setDisplayOrientation() method.

e [C-1-5] MUST NOT mirror the final captured still image or video streams returned to
application callbacks or committed to media storage.

e [C-1-6] MUST mirror the image displayed by the postview in the same manner as the
camera preview image stream.

e MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as

described in section 7.5.1 .

If device implementations are capable of being rotated by user (such as automatically via an
accelerometer or manually via user input):

e [C-2-1] The camera preview MUST be mirrored horizontally relative to the device’s current
orientation.

7.5.3. External Camera
Device implementations:

e MAY include support for an external camera that is not necessarily always connected.

If device implementations include support for an external camera, they:

e [C-1-1] MUST declare the platform feature flag android.hardware.camera.external and
android.hardware camera.any .

[C-1-2] MUST support USB Video Class (UVC 1.0 or higher) if the external camera
connects through the USB host port.

[C-1-3] MUST pass camera CTS tests with a physical external camera device connected.
Details of camera CTS testing are available at source.android.com .

SHOULD support video compressions such as MJPEG to enable transfer of high-quality
unencoded streams (i.e. raw or independently compressed picture streams).

e MAY support multiple cameras.
e MAY support camera-based video encoding.

If camera-based video encoding is supported:

e [C-2-1] A simultaneous unencoded / MJPEG stream (QVGA or greater resolution) MUST
be accessible to the device implementation.

7.5.4. Camera API Behavior

Android includes two API packages to access the camera, the newer android.hardware.camera2 API
expose lower-level camera control to the app, including efficient zero-copy burst/streaming flows
and per-frame controls of exposure, gain, white balance gains, color conversion, denoising,
sharpening, and more.

The older API package, android.hardware.Camera , is marked as deprecated in Android 5.0 but as it
SHOULD still be available for apps to use. Android device implementations MUST ensure the
continued support of the API as described in this section and in the Android SDK.

All features that are common between the deprecated android.hardware.Camera class and the newer
android.hardware.camera2 package MUST have equivalent performance and quality in both APlIs. For
example, with equivalent settings, autofocus speed and accuracy MUST be identical, and the quality
of captured images MUST be the same. Features that depend on the different semantics of the two
APlIs are not required to have matching speed or quality, but SHOULD match as closely as possible.

Device implementations MUST implement the following behaviors for the camera-related APIs, for all
available cameras. Device implementations:
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[C-0-1] MUST use android.hardware.PixelFormat.YCbCr 420 SP for preview data provided to
application callbacks when an application has never called
android.hardware.Camera.Parameters.setPreviewFormat(int) .

e [C-0-2] MUST further be in the NV21 encoding format when an application registers an
android.hardware.Camera.PreviewCallback instance and the system calls the
onPreviewFrame() method and the preview format is YCbCr_420_SP, the data in the byte[]
passed into onPreviewFrame() . That is, NV21 MUST be the default.

e [C-0-3] MUST support the YV12 format (as denoted by the
android.graphics.ImageFormat.YV12 constant) for camera previews for both front- and rear-
facing cameras for android.hardware.Camera . (The hardware video encoder and camera
may use any native pixel format, but the device implementation MUST support conversion
toYV12.)

e [C-0-4] MUST support the android.hardware.ImageFormat.YUV_420_888 and
android.hardware.ImageFormat.JPEG formats as outputs through the
android.media.ImageReader API for android.hardware.camera2 devices that advertise
REQUEST AVAILABLE CAPABILITIES BACKWARD_COMPATIBLE capability in
android.request.availableCapabilities .

e [C-0-5] MUST still implement the full Camera API included in the Android SDK
documentation, regardless of whether the device includes hardware autofocus or other
capabilities. For instance, cameras that lack autofocus MUST still call any registered
android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to
a non-autofocus camera.) Note that this does apply to front-facing cameras; for instance,
even though most front-facing cameras do not support autofocus, the API callbacks
MUST still be “faked” as described.

e [C-0-6] MUST recognize and honor each parameter name defined as a constant in the
android.hardware.Camera.Parameters class and the android.hardware.camera2.CaptureRequest
class. Conversely, device implementations MUST NOT honor or recognize string
constants passed to the android.hardware.Camera.setParameters() method other than those
documented as constants on the android.hardware.Camera.Parameters . That is, device
implementations MUST support all standard Camera parameters if the hardware allows,
and MUST NOT support custom Camera parameter types. For instance, device
implementations that support image capture using high dynamic range (HDR) imaging
techniques MUST support camera parameter Camera.SCENE_ MODE HDR .

e [C-0-7] MUST report the proper level of support with the
android.info.supportedHardwarcLevel property as described in the Android SDK and report
the appropriate framework feature flags .

e [C-0-8] MUST also declare its individual camera capabilities of android.hardware.camera2 via
the android.request.availableCapabilitiecs property and declare the appropriate feature flags ;
MUST define the feature flag if any of its attached camera devices supports the feature.

e [C-0-9] MUST broadcast the Camera. ACTION_NEW_PICTURE intent whenever a new
picture is taken by the camera and the entry of the picture has been added to the media
store.

e [C-0-10] MUST broadcast the Camera. ACTION_NEW_VIDEO intent whenever a new video
is recorded by the camera and the entry of the picture has been added to the media store.

e [C-0-11] MUST have all cameras accessible via the deprecated android.hardware.Camera
API also accessible via the android.hardware.camera2 API.

e [C-SR] For devices with multiple RGB cameras facing in the same direction, are

STRONGLY RECOMMENDED to support a logical camera device that lists capability

CameraMetadata. REQUEST AVAILABLE CAPABILITIES LOGICAL MULTI CAMERA,
consisting of all of the RGB cameras facing that direction as physical sub-devices.

If device implementations provide a proprietary camera API to 3rd-party apps, they:

e [C-1-1] MUST implement such a camera API usingandroid.hardware.camera2 API.
e MAY provide vendor tags and/or extensions to android.hardware.camera2 API.

7.5.5. Camera Orientation

If device implementations have a front- or a rear-facing camera, such camera(s):

e [C-1-1] MUST be oriented so that the long dimension of the camera aligns with the
screen’s long dimension. That is, when the device is held in the landscape orientation,
cameras MUST capture images in the landscape orientation. This applies regardless of
the device’s natural orientation; that is, it applies to landscape-primary devices as well as
portrait-primary devices.
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7.6. Memory and Storage
7.6.1. Minimum Memory and Storage

Device implementations:

e [C-0-1] MUST include a Download Manager that applications MAY use to download data
files and they MUST be capable of downloading individual files of at least 1T00MB in size
to the default “cache” location.

7.6.2. Application Shared Storage

Device implementations:

e [C-0-1] MUST offer storage to be shared by applications, also often referred as “shared
external storage”, "application shared storage" or by the Linux path "/sdcard" it is
mounted on.

e [C-0-2] MUST be configured with shared storage mounted by default, in other words “out
of the box”, regardless of whether the storage is implemented on an internal storage
component or a removable storage medium (e.g. Secure Digital card slot).

e [C-0-3] MUST mount the application shared storage directly on the Linux path sdcard or
include a Linux symbolic link from sdcard to the actual mount point.

e [C-0-4] MUST enforce the android.permission. WRITE_ EXTERNAL STORAGE permission on
this shared storage as documented in the SDK.

e [C-0-5] MUST enable scoped storage by default for all apps targeting API level 29 or
above, except in the following situations:

o when the app was installed before the device upgraded to API level 29,
regardless of the target API of the app.

o when the app has requested android:requestLegacyExternalStorage="true" in their
manifest.

o when the app is granted the android.permission. WRITE_ MEDIA_ STORAGE
permission.

e [C-0-6] MUST enforce that apps with scoped storage enabled have no direct filesystem
access to files outside of their application-specific directories, as returned by Context API
methods such as Context.getExternalFilesDirs() , Context.getExternalCacheDirs() ,
Context.getExternalMediaDirs() , and Context.getObbDirs() methods.

e [C-0-7] MUST redact location metadata, such as GPS Exif tags, stored in media files when
those files are accessed through MediaStore , except when the calling app holds the
ACCESS MEDIA LOCATION permission.

Device implementations MAY meet the above requirements using either of the following:

e User-accessible removable storage, such as a Secure Digital (SD) card slot.

e A portion of the internal (non-removable) storage as implemented in the Android Open
Source Project (AOSP).

If device implementations use removable storage to satisfy the above requirements, they:

e [C-1-1] MUST implement a toast or pop-up user interface warning the user when there is
no storage medium inserted in the slot.

e [C-1-2] MUST include a FAT-formatted storage medium (e.g. SD card) or show on the box
and other material available at time of purchase that the storage medium has to be
purchased separately.

If device implementations use a portion of the non-removable storage to satisfy the above
requirements, they:

e SHOULD use the AOSP implementation of the internal application shared storage.
e MAY share the storage space with the application private data.

If device implementations include multiple shared storage paths (such as both an SD card slot and

shared internal storage), they:

e [C-2-1] MUST allow only pre-installed and privileged Android applications with the
WRITE_MEDIA STORAGE permission to write to the secondary external storage, except
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when writing to their package-specific directories or within the URI returned by firing the
ACTION_OPEN DOCUMENT TREE intent.

e [C-2-2] MUST require that the direct access associated with the
android.permission. WRITE_ MEDIA STORAGE permission is only given to user-visible apps
when the android.permission.WRITE_EXTERNAL_STORAGE permission is also granted.

e [SR] STRONGLY RECOMMENDED that pre-installed and privileged Android applications
use public APIs such as MediaStore to interact with storage devices, instead of relying on
the direct access granted by android.permission.WRITE_MEDIA_STORAGE .

If device implementations have a USB port with USB peripheral mode support, they:

e [C-3-1] MUST provide a mechanism to access the data on the application shared storage
from a host computer.

e SHOULD expose content from both storage paths transparently through Android’s media
scanner service and android.provider.MediaStore .

e MAY use USB mass storage, but SHOULD use Media Transfer Protocol to satisfy this
requirement.

If device implementations have a USB port with USB peripheral mode and support Media Transfer

Protocol, they:

e SHOULD be compatible with the reference Android MTP host, Android File Transfer .
e SHOULD report a USB device class of 0x00.
e SHOULD report a USB interface name of 'MTP".

7.6.3. Adoptable Storage
If the device is expected to be mobile in nature unlike Television, device implementations are:

e [SR] STRONGLY RECOMMENDED to implement the adoptable storage in a long-term
stable location, since accidentally disconnecting them can cause data loss/corruption.

If the removable storage device port is in a long-term stable location, such as within the battery
compartment or other protective cover, device implementations are:

e [SR] STRONGLY RECOMMENDED to implement adoptable storage .

7.7.USB

If device implementations have a USB port, they:

e SHOULD support USB peripheral mode and SHOULD support USB host mode.

7.7.1. USB peripheral mode

If device implementations include a USB port supporting peripheral mode:

e [C-1-1] The port MUST be connectable to a USB host that has a standard type-A or type-C
USB port.

e [C-1-2] MUST report the correct value of iSerialNumber in USB standard device descriptor
through android.os.Build. SERIAL .

e [C-1-3] MUST detect 1.5A and 3.0A chargers per the Type-C resistor standard and MUST
detect changes in the advertisement if they support Type-C USB.

e [SR] The port SHOULD use micro-B, micro-AB or Type-C USB form factor. Existing and
new Android devices are STRONGLY RECOMMENDED to meet these requirements so they
will be able to upgrade to the future platform releases.

e [SR] The port SHOULD be located on the bottom of the device (according to natural
orientation) or enable software screen rotation for all apps (including home screen), so
that the display draws correctly when the device is oriented with the port at bottom.
Existing and new Android devices are STRONGLY RECOMMENDED to meet these
requirements so they will be able to upgrade to future platform releases.

e [SR] SHOULD implement support to draw 1.5 A current during HS chirp and traffic as
specified in the USB Battery Charging specification, revision 1.2 . Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements so they will
be able to upgrade to the future platform releases.
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[SR] STRONGLY RECOMMENDED to not support proprietary charging methods that modify

Vbus voltage beyond default levels, or alter sink/source roles as such may result in

interoperability issues with the chargers or devices that support the standard USB Power

Delivery methods. While this is called out as "STRONGLY RECOMMENDED", in future

Android versions we might REQUIRE all type-C devices to support full interoperability with

standard type-C chargers.

e [SR] STRONGLY RECOMMENDED to support Power Delivery for data and power role
swapping when they support Type-C USB and USB host mode.

e SHOULD support Power Delivery for high-voltage charging and support for Alternate
Modes such as display out.

e SHOULD implement the Android Open Accessory (AOA) API and specification as

documented in the Android SDK documentation.

If device implementations include a USB port and implement the AOA specification, they:

e [C-2-1] MUST declare support for the hardware feature android.hardware.usb.accessory .

e [C-2-2] The USB mass storage class MUST include the string "android" at the end of the
interface description ilnterface string of the USB mass storage

e SHOULD NOT implement AOAv2 audio documented in the Android Open Accessory
Protocol 2.0 documentation. AOAv2 audio is deprecated as of Android version 8.0 (API
level 26).

7.7.2. USB host mode

If device implementations include a USB port supporting host mode, they:

e [C-1-1] MUST implement the Android USB host APl as documented in the Android SDK
and MUST declare support for the hardware feature android.hardware.usb.host .

e [C-1-2] MUST implement support to connect standard USB peripherals, in other words,
they MUST either:

o Have an on-device type C port or ship with cable(s) adapting an on-device
proprietary port to a standard USB type-C port (USB Type-C device).

o Have an on-device type A or ship with cable(s) adapting an on-device
proprietary port to a standard USB type-A port.

o Have an on-device micro-AB port, which SHOULD ship with a cable adapting to
a standard type-A port.

e [C-1-3] MUST NOT ship with an adapter converting from USB type A or micro-AB ports to
a type-C port (receptacle).

e [C-SR] Are STRONGLY RECOMMENDED to implement the USB audio class as documented
in the Android SDK documentation.

e SHOULD support charging the connected USB peripheral device while in host mode;
advertising a source current of at least 1.5A as specified in the Termination Parameters
section of the USB Type-C Cable and Connector Specification Revision 1.2 for USB Type-
C connectors or using Charging Downstream Port(CDP) output current range as specified
in the USB Battery Charging specifications, revision 1.2 for Micro-AB connectors.

e SHOULD implement and support USB Type-C standards.

If device implementations include a USB port supporting host mode and the USB audio class, they:

e [C-2-1] MUST support the USB HID class .

e [C-2-2] MUST support the detection and mapping of the following HID data fields
specified in the USB HID Usage Tables and the Voice Command Usage Request to the
KeyEvent constants as below:

o Usage Page (0xC) Usage ID (0xOCD): KEYCODE_MEDIA PLAY PAUSE
o Usage Page (0xC) Usage ID (0xOE9): KEYCODE VOLUME_UP

o Usage Page (0xC) Usage ID (0XxOEA): KEYCODE VOLUME DOWN

o Usage Page (0xC) Usage ID (0xOCF): KEYCODE_VOICE_ASSIST

If device implementations include a USB port supporting host mode and the Storage Access
Framework (SAF), they:

e [C-3-1] MUST recognize any remotely connected MTP (Media Transfer Protocol) devices

and make their contents accessible through the ACTION_GET_CONTENT,
ACTION_OPEN DOCUMENT, and ACTION CREATE DOCUMENT intents.
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If device implementations include a USB port supporting host mode and USB Type-C, they:

e [C-4-1] MUST implement Dual Role Port functionality as defined by the USB Type-C
specification (section 4.5.1.3.3).

e [SR] STRONGLY RECOMMENDED to support DisplayPort, SHOULD support USB
SuperSpeed Data Rates, and are STRONGLY RECOMMENDED to support Power Delivery
for data and power role swapping.

e [SR] STRONGLY RECOMMENDED to NOT support Audio Adapter Accessory Mode as
described in the Appendix A of the USB Type-C Cable and Connector Specification
Revision 1.2 ..

e SHOULD implement the Try.* model that is most appropriate for the device form factor.
For example a handheld device SHOULD implement the Try.SNK model.

7.8. Audio
7.8.1. Microphone

If device implementations include a microphone, they:

[C-1-1] MUST report the android.hardware.microphone feature constant.
[C-1-2] MUST meet the audio recording requirements in section 5.4 .
[C-1-3] MUST meet the audio latency requirements insection 5.6 .

[SR] Are STRONGLY RECOMMENDED to support near-ultrasound recording as described
in section 7.8.3.

If device implementations omit a microphone, they:

e [C-2-1] MUST NOT report the android.hardware.microphone feature constant.
e [C-2-2] MUST implement the audio recording API at least as no-ops, persection 7 .

7.8.2. Audio Output

If device implementations include a speaker or an audio/multimedia output port for an audio output
peripheral such as a 4 conductor 3.5mm audio jack or USB host mode port using USB audio class,
they:

e [C-1-1] MUST report the android.hardware.audio.output feature constant.
e [C-1-2] MUST meet the audio playback requirements in section 5.5 .
e [C-1-3] MUST meet the audio latency requirements in section 5.6 .

e [SR] STRONGLY RECOMMENDED to support near-ultrasound playback as described in
section7.8.3.

If device implementations do not include a speaker or audio output port, they:

e [C-2-1] MUST NOT report the android.hardware.audio.output feature.
e [C-2-2] MUST implement the Audio Output related APIs as no-ops at least.

For the purposes of this section, an "output port" is a physical interface such as a 3.5mm audio jack,
HDMI, or USB host mode port with USB audio class. Support for audio output over radio-based
protocols such as Bluetooth, WiFi, or cellular network does not qualify as including an "output port".

7.8.2.1. Analog Audio Ports

In order to be compatible with the headsets and other audio accessories using the 3.5mm audio plug
across the Android ecosystem, if device implementations include one or more analog audio ports,
they:

e [C-SR] Are STRONGLY RECOMMENDED to include at least one of the audio port(s) to be a
4 conductor 3.5mm audio jack.

If device implementations have a 4 conductor 3.5mm audio jack, they:

e [C-1-1] MUST support audio playback to stereo headphones and stereo headsets with a
microphone.

android
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[C-1-2] MUST support TRRS audio plugs with the CTIA pin-out order.
[C-1-3] MUST support the detection and mapping to the keycodes for the following 3
ranges of equivalent impedance between the microphone and ground conductors on the
audio plug:
o 70 ohm or less : KEYCODE _HEADSETHOOK
o 210-290 ohm : KEYCODE_VOLUME_UP
o 360-680 ohm : KEYCODE_VOLUME_DOWN
e [C-1-4] MUST trigger ACTION_HEADSET PLUG upon a plug insert, but only after all
contacts on plug are touching their relevant segments on the jack.
e [C-1-5] MUST be capable of driving at least 150mV * 10% of output voltage on a 32 ohm
speaker impedance.
e [C-1-6] MUST have a microphone bias voltage between 1.8V ~ 2.9V.
e [C-1-7] MUST detect and map to the keycode for the following range of equivalent
impedance between the microphone and ground conductors on the audio plug:
o 110-180 ohm: KEYCODE_VOICE_ASSIST
e [C-SR] Are STRONGLY RECOMMENDED to support audio plugs with the OMTP pin-out
order.
e [C-SR] Are STRONGLY RECOMMENDED to support audio recording from stereo headsets
with a microphone.

If device implementations have a 4 conductor 3.5mm audio jack and support a microphone, and
broadcast the android.intent.action. HEADSET PLUG with the extra value microphone set as 1, they:

e [C-2-1] MUST support the detection of microphone on the plugged in audio accessory.

7.8.2.2. Digital Audio Ports

In order to be compatible with the headsets and other audio accessories using USB-C connectors and

implementing (USB audio class) across the Android ecosystem as defined in Android USB headset
specification .
See Section 2.2.1 for device-specific requirements.

7.8.3. Near-Ultrasound

Near-Ultrasound audio is the 18.5 kHz to 20 kHz band.
Device implementations:

e MUST correctly report the support of near-ultrasound audio capability via the
AudioManager.getProperty API as follows:

If PROPERTY_SUPPORT MIC NEAR_ULTRASOUND is "true’, the following requirements MUST be
met by the VOICE_ RECOGNITION and UNPROCESSED audio sources:

e [C-1-1] The microphone's mean power response in the 18.5 kHz to 20 kHz band MUST be
no more than 15 dB below the response at 2 kHz.

e [C-1-2] The microphone's unweighted signal to noise ratio over 18.5 kHz to 20 kHz for a
19 kHz tone at -26 dBFS MUST be no lower than 50 dB.

If PROPERTY_SUPPORT_SPEAKER NEAR_ULTRASOUND is "true":

e [C-2-1] The speaker's mean response in 18.5 kHz - 20 kHz MUST be no lower than 40 dB
below the response at 2 kHz.

7.8.4. Signal Integrity
Device implementations:

e SHOULD provide a glitch-free audio signal path for both input and output streams on
handheld devices, as defined by zero glitches measured during a test of one minute per
path. Test using [OboeTester]
(https://github.com/google/oboe/tree/master/apps/OboeTester) “Automated Glitch
Test".

The test requires an [audio loopback dongle]
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(https://source.android.com/devices/audio/latency/loopback), used directly in a 3.5mm jack, and/or
in combination with a USB-C to 3.5mm adapter. All audio output ports SHOULD be tested.

OboeTester currently supports AAudio paths, so the following combinations SHOULD be tested for
glitches using AAudio:

Perf Mode Sharing Out Sample Rate In Chans Out Chans
LOW_LATENCY EXCLUSIVE UNSPECIFIED 1 2
LOW_LATENCY EXCLUSIVE UNSPECIFIED 2 1
LOW_LATENCY SHARED UNSPECIFIED 1 2
LOW_LATENCY SHARED UNSPECIFIED 2 1
NONE SHARED 48000 1 2
NONE SHARED 48000 2 1
NONE SHARED 44100 1 2
NONE SHARED 44100 2 1
NONE SHARED 16000 1 2
NONE SHARED 16000 2 1

A reliable stream SHOULD meet the following criteria for Signal to Noise Ratio (SNR) and Total
Harmonic Distortion (THD) for 2000 Hz sine.

Transducer THD SNR
primary built-in speaker, measured using an external reference microphone <3.0% |>=50dB
primary built-in microphone, measured using an external reference speaker <3.0% |>=50dB
built-in analog 3.5 mm jacks, tested using loopback adapter <1% |>=60dB
USB adapters supplied with the phone, tested using loopback adapter <1.0% |>=60dB

7.9. Virtual Reality
Android includes APIs and facilities to build "Virtual Reality" (VR) applications including high quality
mobile VR experiences. Device implementations MUST properly implement these APIs and

behaviors, as detailed in this section.

7.9.1. Virtual Reality Mode

Android includes support for VR Mode , a feature which handles stereoscopic rendering of
notifications and disables monocular system Ul components while a VR application has user focus.

7.9.2. Virtual Reality Mode - High Performance

If device implementations support VR mode, they:

[C-1-1] MUST have at least 2 physical cores.

[C-1-2] MUST declare the android.hardware.vr.high_performance feature.

[C-1-3] MUST support sustained performance mode.

[C-1-4] MUST support OpenGL ES 3.2.

[C-1-5] MUST support android.hardware.vulkan.level 0.

e SHOULD support android.hardware.vulkan.level 1 or higher.

e [C-1-6] MUST implement EGL_KHR_mutable_render_buffer,
EGL_ANDROID_front buffer auto_refresh , EGL_ANDROID_get native client buffer,
EGL_KHR fence sync, EGL KHR wait sync, EGL IMG context priority,

EGL_EXT protected content, EGL._EXT image gl colorspace , and expose the extensions in
the list of available EGL extensions.

e [C-1-8] MUST implement GL_EXT_multisampled render _to_texture2 , GL_OVR_multiview ,
GL_OVR multiview2 , GL OVR multiview multisampled render to_texture,

GL_EXT protected_textures , and expose the extensions in the list of available GL
extensions.

e [C-SR] Are STRONGLY RECOMMENDED to implement GL_EXT _external_buffer,

GL_EXT_EGL _image array , and expose the extensions in the list of available GL

android
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extensions.

e [C-SR] Are STRONGLY RECOMMENDED to support Vulkan 1.1.

e [C-SR] Are STRONGLY RECOMMENDED to implement
VK _ANDROID_external memory android hardware buffer, VK GOOGLE display timing,
VK_KHR_shared presentable image , and expose it in the list of available Vulkan
extensions.

e [C-SR] Are STRONGLY RECOMMENDED to expose at least one Vulkan queue family where
flags contain both VK_QUEUE_GRAPHICS_BIT and VK_QUEUE_COMPUTE _BIT, and
queueCount is at least 2.

e [C-1-7] The GPU and display MUST be able to synchronize access to the shared front
buffer such that alternating-eye rendering of VR content at 60fps with two render contexts
will be displayed with no visible tearing artifacts.

e [C-1-9] MUST implement support for AHardwareBuffer flags
AHARDWAREBUFFER USAGE GPU DATA BUFFER,
AHARDWAREBUFFER USAGE SENSOR DIRECT DATA and
AHARDWAREBUFFER USAGE PROTECTED_ CONTENT as described in the NDK.

e [C-1-10] MUST implement support for AHardwareBuffer s with any combination of the
usage flags AHARDWAREBUFFER USAGE GPU COLOR OUTPUT,
AHARDWAREBUFFER USAGE GPU SAMPLED IMAGE,
AHARDWAREBUFFER USAGE PROTECTED CONTENT for at least the following
formats: AHARDWAREBUFFER_FORMAT R5G6B5 UNORM,
AHARDWAREBUFFER FORMAT R8G8B8A8 UNORM,
AHARDWAREBUFFER FORMAT R10G10B10A2 UNORM,
AHARDWAREBUFFER FORMAT R16G16B16A16 FLOAT .

e [C-SR] Are STRONGLY RECOMMENDED to support the allocation of AHardwareBuffer s
with more than one layer and flags and formats specified in C-1-10.

e [C-1-11] MUST support H.264 decoding at least 3840 x 2160 at 30fps, compressed to an
average of 40Mbps (equivalent to 4 instances of 1920 x1080 at 30 fps-10 Mbps or 2
instances of 1920 x 1080 at 60 fps-20 Mbps).

e [C-1-12] MUST support HEVC and VP9, MUST be capable of decoding at least 1920 x
1080 at 30 fps compressed to an average of 10 Mbps and SHOULD be capable of
decoding 3840 x 2160 at 30 fps-20 Mbps (equivalent to 4 instances of 1920 x 1080 at 30
fps-5 Mbps).

e [C-1-13] MUST support HardwarePropertiesManager.getDevice Temperatures APl and return
accurate values for skin temperature.

e [C-1-14] MUST have an embedded screen, and its resolution MUST be at least 1920 x
1080.

o [C-SR] Are STRONGLY RECOMMENDED to have a display resolution of at least 2560 x
1440.

e [C-1-15] The display MUST update at least 60 Hz while in VR Mode.

e [C-1-17] The display MUST support a low-persistence mode with < 5 milliseconds
persistence, persistence being defined as the amount of time for which a pixel is emitting
light.

e [C-1-18] MUST support Bluetooth 4.2 and Bluetooth LE Data Length Extensionsection

e [C-1-19] MUST support and properly report Direct Channel Type for all of the following
default sensor types:

o TYPE ACCELEROMETER

o TYPE ACCELEROMETER UNCALIBRATED
o TYPE GYROSCOPE

o TYPE GYROSCOPE UNCALIBRATED

o TYPE MAGNETIC FIELD

o TYPE MAGNETIC FIELD UNCALIBRATED

e [C-SR] Are STRONGLY RECOMMENDED to support the TYPE HARDWARE BUFFER direct
channel type for all Direct Channel Types listed above.

e [C-1-21] MUST meet the gyroscope, accelerometer, and magnetometer related
requirements for android.hardware.hifi_sensors , as specified in section 7.3.9 .

e [C-SR] Are STRONGLY RECOMMENDED to support the android.hardware.sensor.hifi_sensors
feature.

e [C-1-22] MUST have end-to-end motion to photon latency not higher than 28 milliseconds.

e [C-SR] Are STRONGLY RECOMMENDED to have end-to-end motion to photon latency not
higher than 20 milliseconds.

e [C-1-23] MUST have first-frame ratio, which is the ratio between the brightness of pixels
on the first frame after a transition from black to white and the brightness of white pixels
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in steady state, of at least 85%.

e [C-SR] Are STRONGLY RECOMMENDED to have first-frame ratio of at least 90%.

e MAY provide an exclusive core to the foreground application and MAY support the
Process.getExclusiveCores API to return the numbers of the cpu cores that are exclusive to
the top foreground application.

If exclusive core is supported, then the core:

e [C-2-1] MUST not allow any other userspace processes to run on it (except device drivers
used by the application), but MAY allow some kernel processes to run as necessary.

8. Performance and Power

Some minimum performance and power criteria are critical to the user experience and impact the
baseline assumptions developers would have when developing an app.

8.1. User Experience Consistency

A smooth user interface can be provided to the end user if there are certain minimum requirements to
ensure a consistent frame rate and response times for applications and games. Device
implementations, depending on the device type, MAY have measurable requirements for the user
interface latency and task switching as described in section 2 .

8.2. File I/0 Access Performance

Providing a common baseline for a consistent file access performance on the application private
data storage (/data partition) allows app developers to set a proper expectation that would help their
software design. Device implementations, depending on the device type, MAY have certain
requirements described in section 2 for the following read and write operations:

e Sequential write performance . Measured by writing a 256MB file using 10MB write
buffer.

e Random write performance . Measured by writing a 256MB file using 4KB write buffer.

e Sequential read performance . Measured by reading a 256MB file using 10MB write
buffer.

e Random read performance . Measured by reading a 256MB file using 4KB write buffer.

8.3. Power-Saving Modes

If device implementations include features to improve device power management that are included in
AOSP or extend the features that are included in AOSP, they:

e [C-1-1] MUST NOT deviate from the AOSP implementation for the triggering,
maintenance, wakeup algorithms and the use of global system settings of App Standby
and Doze power-saving modes.

e [C-1-2] MUST NOT deviate from the AOSP implementation for the use of global settings to
manage the throttling of jobs, alarm and network for apps in each bucket for App standby.

e [C-1-3] MUST NOT deviate from the AOSP implementation for the number of the App
Standby Buckets used for App Standby.

e [C-1-4] MUST implement App Standby Buckets and Doze as described in Power
Management .

e [C-1-5] MUST return true for PowerManager.isPowerSaveMode() when the device is on power
save mode.

e [C-SR] Are STRONGLY RECOMMENDED to provide user affordance to enable and disable
the battery saver feature.

e [C-SR] Are STRONGLY RECOMMENDED to provide user affordance to display all Apps that
are exempted from App Standby and Doze power-saving modes.

In addition to the power-saving modes, Android device implementations MAY implement any or all of
the 4 sleeping power states as defined by the Advanced Configuration and Power Interface (ACPI).

If device implementations implement S4 power states as defined by the ACPI, they:

e [C-1-1] MUST enter this state only after the user has taken an explicit action to put the
device in an inactive state (e.g. by closing a lid that is physically part of the device or
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turning off a vehicle or television) and before the user re-activates the device (e.g. by
opening the lid or turning the vehicle or television back on).

If device implementations implement S3 power states as defined by the ACPI, they:

e [C-2-1] MUST meet C-1-1 above, or, MUST enter S3 state only when third-party
applications do not need the system resources (e.g. the screen, CPU).

Conversely, MUST exit from S3 state when third-party applications need the system
resources, as described on this SDK.

For example, while the third-party applications request to keep the screen on through
FLAG_KEEP_SCREEN_ON or keep CPU running through PARTIAL WAKE LOCK , the
device MUST NOT enter S3 state unless, as described in C-1-1, the user has taken explicit
action to put the device in an inactive state. Conversely, at a time when a task that third-
party apps implement through JobScheduler is triggered or Firebase Cloud Messaging is
delivered to third-party apps, the device MUST exit the S3 state unless the user has put
the device in an inactive state. These are not comprehensive examples and AOSP
implements extensive wake-up signals that trigger a wakeup from this state.

8.4. Power Consumption Accounting

A more accurate accounting and reporting of the power consumption provides the app developer
both the incentives and the tools to optimize the power usage pattern of the application.

Device implementations:

[SR] STRONGLY RECOMMENDED to provide a per-component power profile that defines
the current consumption value for each hardware component and the approximate battery
drain caused by the components over time as documented in the Android Open Source
Project site.

e [SR] STRONGLY RECOMMENDED to report all power consumption values in milliampere
hours (mAh).

e [SR] STRONGLY RECOMMENDED to report CPU power consumption per each process's
UID. The Android Open Source Project meets the requirement through the uid cputime
kernel module implementation.

e [SR] STRONGLY RECOMMENDED to make this power usage available via the adb shell
dumpsys batterystats shell command to the app developer.

e SHOULD be attributed to the hardware component itself if unable to attribute hardware

component power usage to an application.

8.5. Consistent Performance

Performance can fluctuate dramatically for high-performance long-running apps, either because of
the other apps running in the background or the CPU throttling due to temperature limits. Android

includes programmatic interfaces so that when the device is capable, the top foreground application

can request that the system optimize the allocation of the resources to address such fluctuations.
Device implementations:

e [C-0-1] MUST report the support of Sustained Performance Mode accurately through the
PowerManager.isSustainedPerformanceModeSupported() APl method.

e SHOULD support Sustained Performance Mode.

If device implementations report support of Sustained Performance Mode, they:

e [C-1-1] MUST provide the top foreground application a consistent level of performance for
at least 30 minutes, when the app requests it.

e [C-1-2] MUST honor the Window.setSustainedPerformanceMode() APl and other related APIs.

If device implementations include two or more CPU cores, they:

e SHOULD provide at least one exclusive core that can be reserved by the top foreground
application.

If device implementations support reserving one exclusive core for the top foreground application,
they:
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e [C-2-1] MUST report through the Process.getExclusiveCores() APl method the ID numbers of
the exclusive cores that can be reserved by the top foreground application.

e [C-2-2] MUST not allow any user space processes except the device drivers used by the
application to run on the exclusive cores, but MAY allow some kernel processes to run as
necessary.

If device implementations do not support an exclusive core, they:

e [C-3-1] MUST return an empty list through the Process.getExclusiveCores() APl method.

9. Security Model Compatibility
Device implementations:
e [C-0-1] MUST implement a security model consistent with the Android platform security

model as defined in Security and Permissions reference document in the APIs in the
Android developer documentation.

e [C-0-2] MUST support installation of self-signed applications without requiring any
additional permissions/certificates from any third parties/authorities. Specifically,
compatible devices MUST support the security mechanisms described in the following
subsections.

9.1. Permissions

Device implementations:

e [C-0-1] MUST support the Android permissions model as defined in the Android developer
documentation. Specifically, they MUST enforce each permission defined as described in
the SDK documentation; no permissions may be omitted, altered, or ignored.

e MAY add additional permissions, provided the new permission ID strings are not in the
android.\* namespace.

e [C-0-2] Permissions with a protectionLevel of PROTECTION FLAG PRIVILEGED MUST
only be granted to apps preinstalled in the privileged path(s) of the system image and
within the subset of the explicitly whitelisted permissions for each app. The AOSP
implementation meets this requirement by reading and honoring the whitelisted
permissions for each app from the files in the etc/permissions/ path and using the
system/priv-app path as the privileged path.

Permissions with a protection level of dangerous are runtime permissions. Applications with
targetSdkVersion > 22 request them at runtime.

Device implementations:

e [C-0-3] MUST show a dedicated interface for the user to decide whether to grant the
requested runtime permissions and also provide an interface for the user to manage
runtime permissions.

e [C-0-4] MUST have one and only one implementation of both user interfaces.

e [C-0-5] MUST NOT grant any runtime permissions to preinstalled apps unless:

o The user's consent can be obtained before the application uses it.
o The runtime permissions are associated with an intent pattern for which the
preinstalled application is set as the default handler.

e [C-0-6] MUST grant the android.permission. RECOVER_KEYSTORE permission only to
system apps that register a properly secured Recovery Agent. A properly secured
Recovery Agent is defined as an on-device software agent that synchronizes with an off-
device remote storage, that is equipped with secure hardware with protection equivalent
or stronger than what is described in Google Cloud Key Vault Service to prevent brute-
force attacks on the lockscreen knowledge factor.

Device implementations:

e [C-0-7] MUST adhere to Android location permission properties when an app requests the
location or physical activity data through standard Android API or proprietary mechanism.
Such data includes but not limited to:

o Device's location (e.g. latitude and longitude).
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o Information that can be used to determine or estimate the device's location
(e.g. SSID, BSSID, Cell ID, Bluetooth scans, or location of the network that the
device is connected to).

o User's physical activity or classification of the physical activity.

More specifically, device implementations:

e [C-0-8] MUST obtain user consent to allow an app to access the location or physical
activity data.

e [C-0-9] MUST grant a runtime permission ONLY to the app that holds sufficient
permission as described on SDK. For example, TelephonyManager#getServiceState
requires android.permission. ACCESS_FINE LOCATION ).

Permissions can be marked as restricted altering their behavior.

e [C-0-10] Permissions marked with the flag hardRestricted MUST NOT be granted to an app
unless:
o An app APK file is in the system partition.
o The user assigns a role that is associated with the hardRestricted permissions
to an app.
o The installer grants the hardRestricted to an app.
o An app is granted the hardRestricted on an earlier Android version.

e [C-0-11] Apps holding a softRestricted permission MUST get only limited access and MUST
NOT gain full access until whitelisted as described in the SDK, where full and limited
access is defined for each softRestricted permission (for example,
WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE ).

If device implementations include a pre-installed app or wish to allow third-party apps to access the
usage statistics, they:

e [SR] are STRONGLY RECOMMENDED provide user-accessible mechanism to grant or
revoke access to the usage stats in response to the
android.settings. ACTION_USAGE_ACCESS_SETTINGS intent for apps that declare the
android.permission. PACKAGE USAGE STATS permission.

If device implementations intend to disallow any apps, including pre-installed apps, from accessing
the usage statistics, they:

e [C-1-1] MUST still have an activity that handles the
android.settings. ACTION_USAGE_ACCESS_SETTINGS intent pattern but MUST implement
it as a no-op, that is to have an equivalent behavior as when the user is declined for
access.

9.2. UID and Process Isolation

Device implementations:

e [C-0-1] MUST support the Android application sandbox model, in which each application
runs as a unique Unixstyle UID and in a separate process.

e [C-0-2] MUST support running multiple applications as the same Linux user ID, provided
that the applications are properly signed and constructed, as defined in the Security and
Permissions reference .

9.3. Filesystem Permissions
Device implementations:

e [C-0-1] MUST support the Android file access permissions model as defined in the
Security and Permissions reference .

9.4. Alternate Execution Environments
Device implementations MUST keep consistency of the Android security and permission model, even

if they include runtime environments that execute applications using some other software or
technology than the Dalvik Executable Format or native code. In other words:
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[C-0-1] Alternate runtimes MUST themselves be Android applications, and abide by the
standard Android security model, as described elsewhere in section 9 .

[C-0-2] Alternate runtimes MUST NOT be granted access to resources protected by
permissions not requested in the runtime’s AndroidManifest.xml file via the < uses-
permission > mechanism.

[C-0-3] Alternate runtimes MUST NOT permit applications to make use of features
protected by Android permissions restricted to system applications.

[C-0-4] Alternate runtimes MUST abide by the Android sandbox model and installed
applications using an alternate runtime MUST NOT reuse the sandbox of any other app
installed on the device, except through the standard Android mechanisms of shared user
ID and signing certificate.

[C-0-5] Alternate runtimes MUST NOT launch with, grant, or be granted access to the
sandboxes corresponding to other Android applications.

[C-0-6] Alternate runtimes MUST NOT be launched with, be granted, or grant to other
applications any privileges of the superuser (root), or of any other user ID.

[C-0-7] When the .apk files of alternate runtimes are included in the system image of
device implementations, it MUST be signed with a key distinct from the key used to sign
other applications included with the device implementations.

[C-0-8] When installing applications, alternate runtimes MUST obtain user consent for the
Android permissions used by the application.

[C-0-9] When an application needs to make use of a device resource for which there is a
corresponding Android permission (such as Camera, GPS, etc.), the alternate runtime
MUST inform the user that the application will be able to access that resource.

[C-0-10] When the runtime environment does not record application capabilities in this
manner, the runtime environment MUST list all permissions held by the runtime itself
when installing any application using that runtime.

Alternate runtimes SHOULD install apps via the PackageManager into separate Android
sandboxes (Linux user IDs, etc.).

Alternate runtimes MAY provide a single Android sandbox shared by all applications using
the alternate runtime.

9.5. Multi-User Support

Android includes support for multiple users and provides support for full user isolation.

Device implementations MAY but SHOULD NOT enable multi-user if they useremovable
media for primary external storage.

If device implementations include multiple users, they:

[C-1-1] MUST meet the following requirements related to multi-user support .

[C-1-2] MUST, for each user, implement a security model consistent with the Android
platform security model as defined in Security and Permissions reference document in
the APIs.

[C-1-3] MUST have separate and isolated shared application storage (a.k.a. /sdcard )
directories for each user instance.

[C-1-4] MUST ensure that applications owned by and running on behalf a given user
cannot list, read, or write to the files owned by any other user, even if the data of both
users are stored on the same volume or filesystem.

[C-1-5] MUST encrypt the contents of the SD card when multiuser is enabled using a key
stored only on non-removable media accessible only to the system if device
implementations use removable media for the external storage APIs. As this will make the
media unreadable by a host PC, device implementations will be required to switch to MTP
or a similar system to provide host PCs with access to the current user’s data.

9.6. Premium SMS Warning

Android includes support for warning users of any outgoing premium SMS message . Premium SMS
messages are text messages sent to a service registered with a carrier that may incur a charge to the

user.

If device implementations declare support for android.hardware.telephony , they:
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e [C-1-1] MUST warn users before sending a SMS message to numbers identified by regular
expressions defined in /data/misc/sms/codes.xml file in the device. The upstream Android
Open Source Project provides an implementation that satisfies this requirement.

9.7. Security Features

Device implementations MUST ensure compliance with security features in both the kernel and
platform as described below.

The Android Sandbox includes features that use the Security-Enhanced Linux (SELinux) mandatory
access control (MAC) system, seccomp sandboxing, and other security features in the Linux kernel.
Device implementations:

e [C-0-1] MUST maintain compatibility with existing applications, even when SELinux or any
other security features are implemented below the Android framework.

e [C-0-2] MUST NOT have a visible user interface when a security violation is detected and
successfully blocked by the security feature implemented below the Android framework,
but MAY have a visible user interface when an unblocked security violation occurs
resulting in a successful exploit.

e [C-0-3] MUST NOT make SELinux or any other security features implemented below the
Android framework configurable to the user or app developer.

e [C-0-4] MUST NOT allow an application that can affect another application through an API
(such as a Device Administration API) to configure a policy that breaks compatibility.

e [C-0-5] MUST split the media framework into multiple processes so that it is possible to
more narrowly grant access for each process as described in the Android Open Source
Project site.

e [C-0-6] MUST implement a kernel application sandboxing mechanism which allows
filtering of system calls using a configurable policy from multithreaded programs. The
upstream Android Open Source Project meets this requirement through enabling the
seccomp-BPF with threadgroup synchronization (TSYNC) as described in the Kernel
Configuration section of source.android.com .

Kernel integrity and self-protection features are integral to Android security. Device implementations:

e [C-0-7] MUST implement kernel stack buffer overflow protection mechanisms. Examples
of such mechanisms are CC_ STACKPROTECTOR REGULAR and
CONFIG_CC_STACKPROTECTOR_STRONG .

e [C-0-8] MUST implement strict kernel memory protections where executable code is read-
only, read-only data is non-executable and non-writable, and writable data is non-
executable (e.g. CONFIG_DEBUG_RODATA or CONFIG_STRICT KERNEL RWX).

e [C-0-9] MUST implement static and dynamic object size bounds checking of copies
between user-space and kernel-space (e.g. CONFIG_HARDENED USERCOPY ) on
devices originally shipping with API level 28 or higher.

e [C-0-10] MUST NOT execute user-space memory when executing in the kernel mode (e.g.
hardware PXN, or emulated via CONFIG_CPU _SW_DOMAIN_PAN or
CONFIG_ARM64 SW_TTBRO PAN ) on devices originally shipping with API level 28 or
higher.

e [C-0-11] MUST NOT read or write user-space memory in the kernel outside of normal
usercopy access APIs (e.g. hardware PAN, or emulated via
CONFIG_CPU_SW_DOMAIN_PAN or CONFIG_ARM64_SW_TTBRO_PAN ) on devices
originally shipping with API level 28 or higher.

e [C-0-12] MUST implement kernel page table isolation if the hardware is vulnerable to CVE-
2017-5754 on all devices originally shipping with API level 28 or higher (e.g.
CONFIG_PAGE_TABLE_ISOLATION or CONFIG_UNMAP_KERNEL AT ELO).

e [C-0-13] MUST implement branch prediction hardening if the hardware is vulnerable to
CVE-2017-5715 on all devices originally shipping with API level 28 or higher (e.g.
CONFIG_HARDEN BRANCH_PREDICTOR ).

e [SR] STRONGLY RECOMMENDED to keep kernel data which is written only during
initialization marked read-only after initialization (e.g. _ ro_after_init ).

e [C-SR] Are STRONGLY RECOMMENDED to randomize the layout of the kernel code and
memory, and to avoid exposures that would compromise the randomization (e.g.
CONFIG_RANDOMIZE BASE with bootloader entropy via the /chosen/kaslr-seed Device Tree
node or EFI_RNG_PROTOCOL ).

¢ [C-SR] Are STRONGLY RECOMMENDED to enable control flow integrity (CFl) in the kernel
to provide additional protection against code-reuse attacks (e.g. CONFIG_CFI_CLANG
and CONFIG_SHADOW_CALL_STACK ).
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e [C-SR] Are STRONGLY RECOMMENDED not to disable Control-Flow Integrity (CFI),
Shadow Call Stack (SCS) or Integer Overflow Sanitization (IntSan) on components that
have it enabled.

e [C-SR] Are STRONGLY RECOMMENDED to enable CFI, SCS, and IntSan for any additional
security-sensitive userspace components as explained in CFl and IntSan .

If device implementations use a Linux kernel, they:

[C-1-1] MUST implement SELinux.
[C-1-2] MUST set SELinux to global enforcing mode.

[C-1-3] MUST configure all domains in enforcing mode. No permissive mode domains are

allowed, including domains specific to a device/vendor.

e [C-1-4] MUST NOT modify, omit, or replace the neverallow rules present within the
system/sepolicy folder provided in the upstream Android Open Source Project (AOSP)
and the policy MUST compile with all neverallow rules present, for both AOSP SELinux
domains as well as device/vendor specific domains.

e [C-1-5] MUST run third-party applications targeting API level 28 or higher in per-
application SELinux sandboxes with per-app SELinux restrictions on each application's
private data directory.

e SHOULD retain the default SELinux policy provided in the system/sepolicy folder of the

upstream Android Open Source Project and only further add to this policy for their own

device-specific configuration.

If device implementations use kernel other than Linux, they:

e [C-2-1] MUST use a mandatory access control system that is equivalent to SELinux.
Android contains multiple defense-in-depth features that are integral to device security.
9.8. Privacy

9.8.1. Usage History

Android stores the history of the user's choices and manages such history by UsageStatsManager .

Device implementations:

e [C-0-1] MUST keep a reasonable retention period of such user history.

e [SR] Are STRONGLY RECOMMENDED to keep the 14 days retention period as configured
by default in the AOSP implementation.

Android stores the system events using the StatsLog identifiers, and manages such history via the
StatsManager and the IncidentManager System API.

Device implementations:

e [C-0-2] MUST only include the fields marked with DEST _AUTOMATIC in the incident
report created by the System API class IncidentManager .

e [C-0-3] MUST not use the system event identifiers to log any other event than what is
described in the StatsLog SDK documents. If additional system events are logged, they
MAY use a different atom identifier in the range between 100,000 and 200,000.

9.8.2. Recording
Device implementations:

e [C-0-1] MUST NOT preload or distribute software components out-of-box that send the
user's private information (e.g. keystrokes, text displayed on the screen, bugreport) off
the device without the user's consent or clear ongoing notifications.

e [C-0-2] MUST display and obtain explicit user consent that includes substantially the
same message as AOSP whenever screen casting or screen recording is enabled via
MediaProjection or proprietary APls. MUST NOT provide users an affordance to disable
future display of the user consent.

e [C-0-3] MUST have an ongoing notification to the user while screen casting or screen
recording is enabled. AOSP meets this requirement by showing an ongoing notification
icon in the status bar.
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If device implementations include functionality in the system that either captures the contents
displayed on the screen and/or records the audio stream played on the device other than via the
System API ContentCaptureService , or other proprietary means described in Section 9.8.6 Content

Capture, they:

e [C-1-1] MUST have an ongoing notification to the user whenever this functionality is
enabled and actively capturing/recording.

If device implementations include a component enabled out-of-box, capable of recording ambient

audio and/or record the audio played on the device to infer useful information about user’s context,

they:

e [C-2-1] MUST NOT store in persistent on-device storage or transmit off the device the
recorded raw audio or any format that can be converted back into the original audio or a
near facsimile, except with explicit user consent.

9.8.3. Connectivity

If device implementations have a USB port with USB peripheral mode support, they:

e [C-1-1] MUST present a user interface asking for the user's consent before allowing
access to the contents of the shared storage over the USB port.

9.8.4. Network Traffic

Device implementations:

e [C-0-1] MUST preinstall the same root certificates for the system-trusted Certificate
Authority (CA) store as provided in the upstream Android Open Source Project.

e [C-0-2] MUST ship with an empty user root CA store.

e [C-0-3] MUST display a warning to the user indicating the network traffic may be
monitored, when a user root CA is added.

If device traffic is routed through a VPN, device implementations:

e [C-1-1] MUST display a warning to the user indicating either:
o That network traffic may be monitored.
o That network traffic is being routed through the specific VPN application
providing the VPN.

If device implementations have a mechanism, enabled out-of-box by default, that routes network
data traffic through a proxy server or VPN gateway (for example, preloading a VPN service with
android.permission. CONTROL VPN granted), they:

e [C-2-1] MUST ask for the user's consent before enabling that mechanism, unless that VPN
is enabled by the Device Policy Controller via the

DevicePolicyManager.setAlwaysOnVpnPackage() , in which case the user does not need to
provide a separate consent, but MUST only be notified.

If device implementations implement a user affordance to toggle on the "always-on VPN" function of

a 3rd-party VPN app, they:

e [C-3-1] MUST disable this user affordance for apps that do not support always-on VPN
service in the AndroidManifest.xml file via setting the
SERVICE_META_DATA_SUPPORTS ALWAYS ON attribute to false .

9.8.5. Device Identifiers

Device implementations:

e [C-0-1] MUST prevent access to the device serial number and, where applicable,
IMEI/MEID, SIM serial number, and International Mobile Subscriber Identity (IMSI) from an
app, unless it meets one of the following requirements:

o is a signed carrier app that is verified by device manufacturers.
o has been granted the READ PRIVILEGED PHONE STATE permission.
o has carrier privileges as defined in UICC Carrier Privileges .
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o is a device owner or profile owner that has been granted the
READ PHONE STATE permission.

o (For SIM serial number/ICCID only) has the local regulations requirement that
the app detect changes in the subscriber's identity.

9.8.6. Content Capture

Android, through the System API ContentCaptureService , or by other proprietary means, supports a
mechanism for device implementations to capture the following interactions between the
applications and the user.

e Text and graphics rendered on-screen, including but not limited to, notifications and
assist data via AssistStructure API.

¢ Media data, such as audio or video, recorded or played by the device.

¢ Input events (e.g. key, mouse, gesture, voice, video, and accessibility).

e Any other events that an application provides to the system via the Content Capture API or
a similarly capable, proprietary API.

If device implementations capture the data above, they:

e [C-0-1] MUST encrypt all such data when stored in the device. This encryption MAY be
carried out using Android File Based Encryption, or any of the ciphers listed as API
version 26+ described in Cipher SDK .

e [C-0-2] MUST NOT back up either raw or encrypted data usingAndroid backup methods
or any other back up methods.

e [C-0-3] MUST only send all such data and the log of the device using a privacy-preserving
mechanism. The privacy-preserving mechanism is defined as “those which allow only
analysis in aggregate and prevent matching of logged events or derived outcomes to
individual users”, to prevent any per-user data being introspectable (e.g., implemented
using a differential privacy technology such as RAPPOR ).

e [C-0-4] MUST NOT associate such data with any user identity (such as Account ) on the
device, except with explicit user consent each time the data is associated.

e [C-0-5] MUST NOT share such data with other apps, except with explicit user consent
every time it is shared.

e [C-0-6] MUST provide user affordance to erase such data that the ContentCaptureService or
the proprietary means collects if the data is stored in any form on the device.

If device implementations include a service that implements the System API ContentCaptureService , or
any proprietary service that captures the data as described as above, they:

e [C-1-1] MUST NOT allow users to replace the content capture service with a user-
installable application or service and MUST only allow the preinstalled service to capture
such data.

[C-1-2] MUST NOT allow any apps other than the preinstalled content capture service
mechanism to be able to capture such data.

[C-1-3] MUST provide user affordance to disable the content capture service.

[C-1-4] MUST NOT omit user affordance to manage Android permissions that are held by
the content capture service and follow Android permissions model as described in
Section 9.1. Permission .

[C-SR] Are STRONGLY RECOMMENDED to keep the content capturing service
components separate, for example, not binding the service or sharing process IDs, from
other system components except for the following:

o Telephony, Contacts, System Ul, and Media

9.8.7. Clipboard Access

Device implementations:

e [C-0-1] MUST NOT return a clipped data on the clipboard (e.g. via theClipboardManager
API) unless the app is the default IME or is the app that currently has focus.

9.8.8. Location

Device implementations:
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[C-0-1] MUST NOT turn on/off device location setting and Wi-Fi/Bluetooth scanning
settings without explicit user consent or user initiation.

[C-0-2] MUST provide the user affordance to access location related information including
recent location requests, app level permissions and usage of Wi-Fi/Bluetooth scanning
for determining location.

[C-0-3] MUST ensure that the application using Emergency Location Bypass API
[LocationRequest.setLocationSettingsignored()] is a user initiated emergency session
(e.g. dial 911 or text to 911).

[C-0-4] MUST preserve the Emergency Location Bypass API's ability to bypass device
location settings without changing the settings.

[C-0-5] MUST schedule a notification that reminds the user after an app in the background
has accessed their location using the [ ACCESS BACKGROUND LOCATION ]
permission.

9.9. Data Storage Encryption

All devices MUST meet the requirements of section 9.9.1. Devices which launched on an API level
earlier than that of this document are exempted from the requirements of sections 9.9.2 and 9.9.3;
instead they MUST meet the requirements in section 9.9 of the Android Compatibility Definition
document corresponding to the API level on which the device launched.

9.9.1. Direct Boot
Device implementations:

e [C-0-1] MUST implement the Direct Boot mode APIs even if they do not support Storage
Encryption.

e [C-0-2] The ACTION _LOCKED BOOT COMPLETED and ACTION _USER_UNLOCKED
Intents MUST still be broadcast to signal Direct Boot aware applications that Device
Encrypted (DE) and Credential Encrypted (CE) storage locations are available for user.

9.9.2. Encryption requirements
Device implementations:

e [C-0-1] MUST encrypt the application private data (/data partition), as well as the
application shared storage partition ( /sdcard partition) if it is a permanent, non-removable
part of the device.

e [C-0-2] MUST enable the data storage encryption by default at the time the user has
completed the out-of-box setup experience.

e [C-0-3] MUST meet the above data storage encryption requirement via implementing File
Based Encryption (FBE).

9.9.3. File Based Encryption

Encrypted devices:

e [C-1-1] MUST boot up without challenging the user for credentials and allow Direct Boot
aware apps to access to the Device Encrypted (DE) storage after the
ACTION_LOCKED_BOOT_COMPLETED message is broadcasted.

e [C-1-2] MUST only allow access to Credential Encrypted (CE) storage after the user has
unlocked the device by supplying their credentials (eg. passcode, pin, pattern or
fingerprint) and the ACTION_USER_UNLOCKED message is broadcasted.

e [C-1-3] MUST NOT offer any method to unlock the CE protected storage without either the
user-supplied credentials or a registered escrow key.

e [C-1-4] MUST use Verified Boot and ensure that DE keys are cryptographically bound to
the device's hardware root of trust.

e [C-1-5] MUST encrypt file contents using AES-256-XTS or Adiantum. AES-256-XTS refers

to the Advanced Encryption Standard with a 256-bit cipher key length, operated in XTS

mode; the full length of the key is 512 bits. Adiantum refers to Adiantum-XChaCha12-AES,
as specified at https://github.com/google/adiantum.

[C-1-6] MUST encrypt file names using AES-256-CBC-CTS or Adiantum.

[C-1-12] MUST use AES-256-XTS for file contents and AES-256-CBC-CTS for file names
(instead of Adiantum) if the device has Advanced Encryption Standard (AES) instructions.
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AES instructions are ARMv8 Cryptography Extensions on ARM-based devices, or AES-NI
on x86-based devices. If the device does not have AES instructions, the device MAY use
Adiantum.

e The keys protecting CE and DE storage areas:

e [C-1-7] MUST be cryptographically bound to a hardware-backed Keystore.

e [C-1-8] CE keys MUST be bound to a user's lock screen credentials.

e [C-1-9] CE keys MUST be bound to a default passcode when the user has not specified
lock screen credentials.

e [C-1-10] MUST be unique and distinct, in other words no user's CE or DE key matches any
other user's CE or DE keys.

e [C-1-11] MUST use the mandatorily supported ciphers, key lengths and modes.

e [C-SR] Are STRONGLY RECOMMENDED to encrypt file system metadata, such as file
sizes, ownership, modes, and Extended attributes (xattrs), with a key cryptographically
bound to the device's hardware root of trust.

e SHOULD make preinstalled essential apps (e.g. Alarm, Phone, Messenger) Direct Boot
aware.

The upstream Android Open Source project provides a preferred implementation of this feature
based on the Linux kernel "fscrypt" encryption feature.

9.10. Device Integrity

The following requirements ensure there is transparency to the status of the device integrity. Device
implementations:

e [C-0-1] MUST correctly report through the System API method
PersistentDataBlockManager.getFlashLockState() whether their bootloader state permits
flashing of the system image. The FLASH LOCK_UNKNOWN state is reserved for device
implementations upgrading from an earlier version of Android where this new system API
method did not exist.

e [C-0-2] MUST support Verified Boot for device integrity.

If device implementations are already launched without supporting Verified Boot on an earlier version
of Android and can not add support for this feature with a system software update, they MAY be
exempted from the requirement.

Verified Boot is a feature that guarantees the integrity of the device software. If device
implementations support the feature, they:

e [C-1-1] MUST declare the platform feature flag android.software.verified_boot .

[C-1-2] MUST perform verification on every boot sequence.

[C-1-3] MUST start verification from an immutable hardware key that is the root of trust

and go all the way up to the system partition.

e [C-1-4] MUST implement each stage of verification to check the integrity and authenticity
of all the bytes in the next stage before executing the code in the next stage.

e [C-1-5] MUST use verification algorithms as strong as current recommendations from
NIST for hashing algorithms (SHA-256) and public key sizes (RSA-2048).

e [C-1-6] MUST NOT allow boot to complete when system verification fails, unless the user
consents to attempt booting anyway, in which case the data from any non-verified storage
blocks MUST not be used.

e [C-1-7] MUST NOT allow verified partitions on the device to be modified unless the user
has explicitly unlocked the bootloader.

o [C-SR] If there are multiple discrete chips in the device (e.qg. radio, specialized image
processor), the boot process of each of those chips is STRONGLY RECOMMENDED to
verify every stage upon booting.

e [C-1-8] MUST use tamper-evident storage: for storing whether the bootloader is unlocked.
Tamper-evident storage means that the bootloader can detect if the storage has been
tampered with from inside Android.

e [C-1-9] MUST prompt the user, while using the device, and require physical confirmation
before allowing a transition from bootloader locked mode to bootloader unlocked mode.

e [C-1-10] MUST implement rollback protection for partitions used by Android (e.g. boot,
system partitions) and use tamper-evident storage for storing the metadata used for
determining the minimum allowable OS version.
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e [C-SR] Are STRONGLY RECOMMENDED to verify all privileged app APK files with a chain
of trust rooted in partitions protected by Verified Boot.

e [C-SR] Are STRONGLY RECOMMENDED to verify any executable artifacts loaded by a
privileged app from outside its APK file (such as dynamically loaded code or compiled
code) before executing them or STRONGLY RECOMMENDED not to execute them at all.

e SHOULD implement rollback protection for any component with persistent firmware (e.g.
modem, camera) and SHOULD use tamper-evident storage for storing the metadata used
for determining the minimum allowable version.

If device implementations are already launched without supporting C-1-8 through C-1-10 on an

earlier version of Android and can not add support for these requirements with a system software

update, they MAY be exempted from the requirements.

The upstream Android Open Source Project provides a preferred implementation of this feature in the

external/avb/ repository, which can be integrated into the bootloader used for loading Android.
Device implementations:

e [C-R] Are RECOMMENDED to support the Android Protected Confirmation API .

If device implementations support the Android Protected Confirmation API they:

e [C-3-1] MUST report true for the ConfirmationPrompt.isSupported() API.

e [C-3-2] MUST ensure that code running in the Android OS including its kernel, malicious or
otherwise, cannot generate a positive response without user interaction.

e [C-3-3] MUST ensure that the user has been able to review and approve the prompted
message even in the event that the Android OS, including its kernel, is compromised.

9.11. Keys and Credentials

The Android Keystore System allows app developers to store cryptographic keys in a container and

use them in cryptographic operations through the KeyChain API or the Keystore API . Device
implementations:

e [C-0-1] MUST allow at least 8,192 keys to be imported or generated.

e [C-0-2] The lock screen authentication MUST rate-limit attempts and MUST have an
exponential backoff algorithm. Beyond 150 failed attempts, the delay MUST be at least 24
hours per attempt.

e SHOULD not limit the number of keys that can be generated

When the device implementation supports a secure lock screen, it:

e [C-1-1] MUST back up the keystore implementation with an isolated execution
environment.

e [C-1-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.

e [C-1-3] MUST perform the lock screen authentication in the isolated execution
environment and only when successful, allow the authentication-bound keys to be used.
Lock screen credentials MUST be stored in a way that allows only the isolated execution
environment to perform lock screen authentication. The upstream Android Open Source
Project provides the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can
be used to satisfy this requirement.

e [C-1-4] MUST support key attestation where the attestation signing key is protected by
secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the
same attestation key unless at least 100,000 units of a given SKU are produced. If more
than 100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.
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Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a keystore backed by an isolated execution environment
and support the key attestation, unless it declares the android.hardware.fingerprint feature which
requires a keystore backed by an isolated execution environment.

e [C-1-5] MUST allow the user to choose the Sleep timeout for transition from the unlocked
to the locked state, with a minimum allowable timeout up to 15 seconds.

9.11.1. Secure Lock Screen and Authentication

The AOSP implementation follows a tiered authentication model where a knowledge-factory based
primary authentication can be backed by either a secondary strong biometric, or by weaker tertiary
modalities.

Device implementations:

e [C-SR] Are STRONGLY RECOMMENDED to set only one of the following as the primary
authentication method:
o A numeric PIN
o An alphanumeric password
o A swipe pattern on a grid of exactly 3x3 dots

Note that the above authentication methods are referred as the recommended primary authentication
methods in this document.

If device implementations add or modify the recommended primary authentication methods and use
a new authentication method as a secure way to lock the screen, the new authentication method:

e [C-2-1] MUST be the user authentication method as described in Requiring User
Authentication For Key Use .

e [C-2-2] MUST unlock all keys for a third-party developer app to use when the user unlocks
the secure lock screen. For example, all keys MUST be available for a third-party
developer app through relevant APIs, such as createConfirmDeviceCredentiallntent and
setUserAuthenticationRequired .

If device implementations add or modify the authentication methods to unlock the lock screen if
based on a known secret and use a new authentication method to be treated as a secure way to lock
the screen:

[C-3-1] The entropy of the shortest allowed length of inputs MUST be greater than 10 bits.

[C-3-2] The maximum entropy of all possible inputs MUST be greater than 18 bits.

[C-3-3] The new authentication method MUST NOT replace any of the recommended

primary authentication methods (i.e. PIN, pattern, password) implemented and provided in

AOSP.

e [C-3-4] The new authentication method MUST be disabled when the Device Policy
Controller (DPC) application has set the password quality policy via the
DevicePolicyManager.setPasswordQuality() method with a more restrictive quality constant
than PASSWORD QUALITY SOMETHING .

e [C-3-5] New authentication methods MUST either fall back to the recommended primary

authentication methods (i.e. PIN, pattern, password) once every 72 hours or less OR

clearly disclose to the user that some data will not be backed up in order to preserve the
privacy of their data.

If device implementations add or modify the recommended primary authentication methods to
unlock the lock screen and use a new authentication method that is based on biometrics to be
treated as a secure way to lock the screen, the new method:

e [C-4-1] MUST meet all requirements described in section 7.3.10 for Convenience .

e [C-4-2] MUST have a fall-back mechanism to use one of the recommended primary
authentication methods which is based on a known secret.

e [C-4-3] MUST be disabled and only allow the recommended primary authentication to
unlock the screen when the Device Policy Controller (DPC) application has set the
keyguard feature pollcy by calllng the method

s() , with any of the associated biometric
flags (i.e. KEYGUARD DISABLE BIOMETRICS KEYGUARD  DISABLE FINGERPRINT,
KEYGUARD_DISABLE_FACE, or KEYGUARD DISABLE IRIS).
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If the biometric authentication methods do not meet the requirements for Strong as described in
section 7.3.10::

e [C-5-1] The methods MUST be disabled if the Device Policy Controller (DPC) application
has set the password quality policy via the DevicePolicyMan
method with a more restrictive quality constant than
PASSWORD QUALITY BIOMETRIC WEAK.

e [C-5-2] The user MUST be challenged for the recommended primary authentication (eg:
PIN, pattern, password) after any 4-hour idle timeout period. The idle timeout period is
reset after any successful confirmation of the device credentials.

e [C-5-3] The methods MUST NOT be treated as a secure lock screen, and MUST meet the
requirements that start with C-8 in this section below.

ager.setPasswordQualit

If device implementations add or modify the authentication methods to unlock the lock screen and a

new authentication method is based on a physical token or the location:

[C-6-1] They MUST have a fall-back mechanism to use one of the recommended primary
authentication methods which is based on a known secret and meet the requirements to
be treated as a secure lock screen.

e [C-6-2] The new method MUST be disabled and only allow one of the recommended
primary authentication methods to unlock the screen when the Device Policy Controller
(DPC) application has set the policy with either the
DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD DISABLE TRUST AGENTS)
method or the DevicePolicyManager.setPasswordQuality() method with a more restrictive
quality constant than PASSWORD_QUALITY_UNSPECIFIED .

o [C-6-3] The user MUST be challenged for one of the recommended primary authentication
methods (e.g.PIN, pattern, password) at least once every 4 hours or less.

e [C-6-4] The new method MUST NOT be treated as a secure lock screen and MUST follow

the constraints listed in C-8 below.

If device implementations have a secure lock screen and include one or more trust agent, which
implements the TrustAgentService System API, they:

e [C-7-1] MUST have clear indication in the settings menu and on the lock screen when
device lock is deferred or can be kept unlocked by trust agent(s). For example, AOSP
meets this requirement by showing a text description for the "Automatically lock setting”
and "Power button instantly locks" in the settings menu and a distinguishable icon on the
lock screen.

e [C-7-2] MUST respect and fully implement all trust agent APIs in the DevicePolicyManager
class, such as the KEYGUARD DISABLE TRUST AGENTS constant.

e [C-7-3] MUST NOT fully implement the TrustAgentService.addEscrowToken() function on a
device that is used as a primary personal device (e.g. handheld) but MAY fully implement
the function on device implementations that are typically shared (e.g. Android Television
or Automotive device).

e [C-7-4] MUST encrypt all stored tokens added by TrustAgentService.addEscrowToken() .

e [C-7-5] MUST NOT store the encryption key or escrow token on the same device where
the key is used. For example, it is allowed for a key stored on a phone to unlock a user
accountona T TV.

e [C-7-6] MUST inform the user about the security implications before enabling the escrow
token to decrypt the data storage.

e [C-7-7] MUST have a fall-back mechanism to use one of the recommended primary
authentication methods.

e [C-7-8] The user MUST be challenged for one of the recommended primary authentication
(eg: PIN, pattern, password) methods at least once every 72 hours or less unless the
safety of the user (e.g. driver distraction) is of concern.

e [C-7-9] The user MUST be challenged for one of the recommended primary authentication
(eg: PIN, pattern, password) methods after any 4-hour idle timeout period unless the
safety of the user (e.g. driver distraction) is of concern.. The idle timeout period is reset
after any successful confirmation of the device credentials.

e [C-7-10] MUST NOT be treated as a secure lock screen and MUST follow the constraints
listed in C-8 below.

e [C-7-11] MUST NOT allow TrustAgents on primary personal devices (e.g: handheld) to
unlock the device, and can only use them to keep an already unlocked device in the
unlocked state for up to a maximum of 4 hours. The default implementation of
TrustManagerService in AOSP meets this requirement.
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e [C-7-12] MUST use a cryptographically secure (e.g UKEY2) communication channel to
pass the escrow token from the storage device to the target device.

If device implementations add or modify the authentication methods to unlock the lock screen that is
not a secure lock screen as described above, and use a new authentication method to unlock the
keyguard:

e [C-8-1] The new method MUST be disabled when the Device Policy Controller (DPC)

application has set the password quality policy via the

DevicePolicyManager.setPasswordQuality() method with a more restrictive quality constant
than PASSWORD QUALITY UNSPECIFIED .

e [C-8-2] They MUST NOT reset the password expiration timers set by
DevicePolicyManager.setPasswordExpirationTimeout() .

e [C-8-3] They MUST NOT expose an API for use by third-party apps to determine the lock
state.

9.11.2. StrongBox

The Android Keystore System allows app developers to store cryptographic keys in a dedicated
secure processor as well as the isolated execution environment described above. Such a dedicated
secure processor is called "StrongBox". Requirements C-1-3 through C-1-11 below define the
requirements a device MUST meet to qualify as a StrongBox.

Device implementations that have a dedicated secure processor:

o [C-SR] Are STRONGLY RECOMMENDED to support StrongBox. StrongBox will likely
become a requirement in a future release.

If device implementations support StrongBox, they:

[C-1-1] MUST declare FEATURE_STRONGBOX_KEYSTORE .

[C-1-2] MUST provide dedicated secure hardware that is used to back keystore and secure
user authentication. The dedicated secure hardware may be used for other purposes as
well.

e [C-1-3] MUST have a discrete CPU that shares no cache, DRAM, coprocessors or other
core resources with the application processor (AP).

e [C-1-4] MUST ensure that any peripherals shared with the AP cannot alter StrongBox
processing in any way, or obtain any information from the StrongBox. The AP MAY disable
or block access to StrongBox.

e [C-1-5] MUST have an internal clock with reasonable accuracy (+-10%) that is immune to
manipulation by the AP.

e [C-1-6] MUST have a true random number generator that produces uniformly-distributed
and unpredictable output.

e [C-1-7] MUST have tamper resistance, including resistance against physical penetration,
and glitching.

e [C-1-8] MUST have side-channel resistance, including resistance against leaking
information via power, timing, electromagnetic radiation, and thermal radiation side
channels.

e [C-1-9] MUST have secure storage which ensures confidentiality, integrity, authenticity,
consistency, and freshness of the contents. The storage MUST NOT be able to be read or
altered, except as permitted by the StrongBox APIs.

e To validate compliance with [C-1-3] through [C-1-9], device implementations:

o [C-1-10] MUST include the hardware that is certified against the Secure IC
Protection Profile BSI-CC-PP-0084-2014 or evaluated by a nationally
accredited testing laboratory incorporating High attack potential vulnerability
assessment according to the Common Criteria Application of Attack Potential
to Smartcards .

o [C-1-11] MUST include the firmware that is evaluated by a nationally
accredited testing laboratory incorporating High attack potential vulnerability
assessment according to the Common Criteria Application of Attack Potential
to Smartcards .

o [C-SR] Are STRONGLY RECOMMENDED to include the hardware that is
evaluated using a Security Target, Evaluation Assurance Level (EAL) 5,
augmented by AVA_VAN.5. EAL 5 certification will likely become a
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requirement in a future release.

e [C-SR] are STRONGLY RECOMMENDED to provide insider attack resistance (IAR), which
means that an insider with access to firmware signing keys cannot produce firmware that
causes the StrongBox to leak secrets, to bypass functional security requirements or
otherwise enable access to sensitive user data. The recommended way to implement IAR
is to allow firmware updates only when the primary user password is provided via the
IAuthSecret HAL. IAR will likely become a requirement in a future release.

9.12. Data Deletion
All device implementations:

e [C-0-1] MUST provide users a mechanism to perform a "Factory Data Reset".

e [C-0-2] MUST delete all data on the userdata filesystem.

e [C-0-3] MUST delete the data in such a way that will satisfy relevant industry standards
such as NIST SP800-88.

e [C-0-4] MUST trigger the above "Factory Data Reset" process when the
DevicePolicyManager.wipeData() AP is called by the primary user's Device Policy Controller
app.

e MAY provide a fast data wipe option that conducts only a logical data erase.

9.13. Safe Boot Mode

Android provides Safe Boot Mode, which allows users to boot up into a mode where only preinstalled
system apps are allowed to run and all third-party apps are disabled. This mode, known as "Safe Boot
Mode", provides the user the capability to uninstall potentially harmful third-party apps.

Device implementations are:

e [SR] STRONGLY RECOMMENDED to implement Safe Boot Mode.
If device implementations implement Safe Boot Mode, they:

e [C-1-1] MUST provide the user an option to enter Safe Boot Mode in such a way that is
uninterruptible from third-party apps installed on the device, except when the third-party
app is a Device Policy Controller and has set the UserManager. DISALLOW_SAFE _BOOT
flag as true.

e [C-1-2] MUST provide the user the capability to uninstall any third-party apps within Safe
Mode.

e SHOULD provide the user an option to enter Safe Boot Mode from the boot menu using a
workflow that is different from that of a normal boot.

9.14. Automotive Vehicle System Isolation

Android Automotive devices are expected to exchange data with critical vehicle subsystems by using
the vehicle HAL to send and receive messages over vehicle networks such as CAN bus.

The data exchange can be secured by implementing security features below the Android framework
layers to prevent malicious or unintentional interaction with these subsystems.

9.15. Subscription Plans

"Subscription plans" refer to the billing relationship plan details provided by a mobile carrier through
SubscriptionManager.setSubscriptionPlans() .
All device implementations:

e [C-0-1] MUST return subscription plans only to the mobile carrier app that has originally
provided them.

e [C-0-2] MUST NOT remotely back up or upload subscription plans.

e [C-0-3] MUST only allow overrides, such as
SubscriptionManager.setSubscriptionOverrideCongested() , from the mobile carrier app
currently providing valid subscription plans.

10. Software Compatibility Testing

android
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Device implementations MUST pass all tests described in this section. However, note that no
software test package is fully comprehensive. For this reason, device implementers are STRONGLY
RECOMMENDED to make the minimum number of changes as possible to the reference and preferred
implementation of Android available from the Android Open Source Project. This will minimize the
risk of introducing bugs that create incompatibilities requiring rework and potential device updates.

10.1. Compatibility Test Suite
Device implementations:

e [C-0-1] MUST pass the Android Compatibility Test Suite (CTS) available from the Android
Open Source Project, using the final shipping software on the device.

e [C-0-2] MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain
bugs. The CTS will be versioned independently of this Compatibility Definition, and multiple revisions
of the CTS may be released for Android 10.

Device implementations:

e [C-0-3] MUST pass the latest CTS version available at the time the device software is
completed.

e SHOULD use the reference implementation in the Android Open Source tree as much as
possible.

10.2. CTS Verifier

The CTS Verifier is included with the Compatibility Test Suite, and is intended to be run by a human
operator to test functionality that cannot be tested by an automated system, such as correct
functioning of a camera and sensors.

Device implementations:

e [C-0-1] MUST correctly execute all applicable cases in the CTS verifier.

The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional.
Device implementations:

e [C-0-2] MUST pass all tests for hardware that they possess; for instance, if a device
possesses an accelerometer, it MUST correctly execute the Accelerometer test case in
the CTS Verifier.

Test cases for features noted as optional by this Compatibility Definition Document MAY be skipped
or omitted.

e [C-0-2] Every device and every build MUST correctly run the CTS Verifier, as noted above.
However, since many builds are very similar, device implementers are not expected to
explicitly run the CTS Verifier on builds that differ only in trivial ways. Specifically, device
implementations that differ from an implementation that has passed the CTS Verifier only
by the set of included locales, branding, etc. MAY omit the CTS Verifier test.

11. Updatable Software

e [C-0-1] Device implementations MUST include a mechanism to replace the entirety of the
system software. The mechanism need not perform “live” upgrades—that is, a device
restart MAY be required. Any method can be used, provided that it can replace the entirety
of the software preinstalled on the device. For instance, any of the following approaches
will satisfy this requirement:

o “Over-the-air (OTA)” downloads with offline update via reboot.
o “Tethered” updates over USB from a host PC.
o “Offline” updates via a reboot and update from a file on removable storage.
e [C-0-2] The update mechanism used MUST support updates without wiping user data.

That is, the update mechanism MUST preserve application private data and application
shared data. Note that the upstream Android software includes an update mechanism
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that satisfies this requirement.

e [C-0-3] The entire update MUST be signed and the on-device update mechanism MUST
verify the update and signature against a public key stored on device.

e [C-SR] The signing mechanism is STRONGLY RECOMMENDED to hash the update with
SHA-256 and validate the hash against the public key using ECDSA NIST P-256.

If the device implementations includes support for an unmetered data connection such as 802.11 or
Bluetooth PAN (Personal Area Network) profile, then, they:

e [C-1-1] MUST support OTA downloads with offline update via reboot.

For device implementations that are launching with Android 6.0 and later, the update mechanism
SHOULD support verifying that the system image is binary identical to expected result following an
OTA. The block-based OTA implementation in the upstream Android Open Source Project, added
since Android 5.1, satisfies this requirement.

Also, device implementations SHOULD support A/B system updates . The AOSP implements this
feature using the boot control HAL.

If an error is found in a device implementation after it has been released but within its reasonable
product lifetime that is determined in consultation with the Android Compatibility Team to affect the
compatibility of third-party applications, then:

e [C-2-1] The device implementer MUST correct the error via a software update available
that can be applied per the mechanism just described.

Android includes features that allow the Device Owner app (if present) to control the installation of
system updates. If the system update subsystem for devices report android.software.device_admin
then, they:

e [C-3-1] MUST implement the behavior described in the SystemUpdatePolicy class.

12. Document Changelog

For a summary of changes to the Compatibility Definition in this release:
e Document changelog

For a summary of changes to individuals sections:

. Introduction
. Device Types
. Software
. Application Packaging
. Multimedia
. Developer Tools and Options
. Hardware Compatibility
. Performance and Power
9. Security Model
10. Software Compatibility Testing
11. Updatable Software
12. Document Changelog
13. Contact Us
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12.1. Changelog Viewing Tips
Changes are marked as follows:

e CDD
Substantive changes to the compatibility requirements.

e Docs
Cosmetic or build related changes.

For best viewing, append the pretty=full and no-merges URL parameters to your changelog URLs.

Oﬂdf@ld Page 125 of 126


https://source.android.com/devices/tech/ota/ab_updates.html
http://developer.android.com/reference/android/app/admin/SystemUpdatePolicy.html
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/1_introduction?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/2_device_types?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/3_software?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/4_application-packaging?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/5_multimedia?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/6_dev-tools-and-options?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/7_hardware-compatibility?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/8_performance-and-power?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/9_security-model?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/10_software-compatibility-testing?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/11_updatable-software?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/12_document-changelog?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/android10-dev/13_contact-us?pretty=full&no-merges

13. Contact Us

You can join the android-compatibility forum and ask for clarifications or bring up any issues that you
think the document does not cover.
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