Ruby - Feature #18812

Add ability to trace exit locations for YJIT
06/01/2022 02:42 PM - eileencodes (Eileen Uchitelle)

Status: Closed
Priority: Normal
Assignee:

Target version:

Description

Currently, when running yjit with --yjit-stats you are able to see method call exit reasons and the top 20 most frequent exits. This is
useful to know where to spend time investigating whether an exit should be fixed, but in a larger codebase like Ralils, it's next to
impossible to know what the Ruby code that is exiting looks like.

Aaron Patterson and | aim to fix that with the addition of --yjit-trace-exits option and feature.

When running with --yjit-stats turned on Ruby code can inform the user
what the most common exits are. While this is useful information it
doesn't tell you the source location of the code that exited or what the
code that exited looks like. This change intends to fix that.

To use the feature, run yjit with --yjit-stats and --yjit-trace-exits,

which will record the backtrace for every exit that occurs. Users must save
the output of RubyVM::YJIT.exit_locations to a dump file. That file

can then be read by StackProf to see the code that exited and the

reason.

Example usage:

Given the following script, we write to a file called
concat_array.dump the results of RubyVM::YJIT.exit_locations.

def concat_array
["t", "r", *x = "u", "e"].join
end
1000.times do
concat_array
end
File.write ("concat_array.dump", Marshal.dump (RubyVM::YJIT.exit_locations))
When we run the file with this branch and the appropriate flags the
stacktrace will be recorded. Note Stackprof needs to be installed or you

need to point to the library directly.

./ruby --yjit —--yJjit-call-threshold=1 --yJjit-stats --yjit-trace-exits -I/Users/eileencodes/open_so
urce/stackprof/lib test.rb

We can then read the dump file with Stackprof:

./ruby -I/Users/eileencodes/open_source/stackprof/lib/ /Users/eileencodes/open_source/stackprof/bi
n/stackprof —--text concat_array.dump

Results will look similar to the following:

Mode: ()
Samples: 1817 (0.00% miss rate)
GC: 0 (0.00%)

TOTAL (pct) SAMPLES (pct) FRAME
1001 (55.1%) 1001 (55.1%) concatarray
335 (18.4%) 335 (18.4%) invokeblock

11/14/2025 1/3

178 (9.8%) 178 (9.8%) send
140 (7.7%) 140 (7.7%) opt_getinlinecache
.etc...

Simply inspecting the concatarray method will give SOURCE UNAVAILABLE because the source is insns.def.

./ruby -I/Users/eileencodes/open_source/stackprof/lib/ /Users/eileencodes/open_source/stackprof/bi
n/stackprof —--text concat_array.dump --method concatarray

Result:

concatarray (nonexistent.def:1)
samples: 1001 self (55.1%) / 1001 total (55.1%)

callers:
1000 (99.9%) Obiject#concat_array
1 | 0.1%) Gem.suffixes
callees (0 total):
code:

SOURCE UNAVAILABLE

However if we go deeper to the callee we can see the exact
source of the concatarray exit.

./ruby -I/Users/eileencodes/open_source/stackprof/lib/ /Users/eileencodes/open_source/stackprof/bi
n/stackprof —--text concat_array.dump --method Object#concat_array

Object#concat_array (/Users/eileencodes/open_source/rust_ruby/test.rb:1)

samples: 0 self (0.0%) / 1000 total (55.0%)
callers:
1000 (100.0%) block in <main>
callees (1000 total):
1000 (100.0%) concatarray
code:
| 1 def concat_array
1000 (55.0%) | 2 | ("t", "r", *x = "u", "e"].join
| 3 | end

The --walk option is recommended for this feature as it make it
easier to traverse the tree of exits.

Goals of this feature:

This feature is meant to give more information when working on YJIT.

The idea is that if we know what code is exiting we can decide what

areas to prioritize when fixing exits. In some cases this means adding
prioritizing avoiding certain exits in yjit. In more complex cases it

might mean changing the Ruby code to be more performant when run with
yjit. Ultimately the more information we have about what code is exiting
AND why, the better we can make yjit.

Known limitations:
* Due to tracing exits, running this on large codebases like Rails

can be quite slow.
¢ On complex methods it can still be difficult to pinpoint the exact cause of

an exit.
e Stackprof is a requirement to to view the backtrace information from
the dump file

PR https://github.com/ruby/ruby/pull/5970

History

#1 - 08/25/2023 06:14 PM - kOkubun (Takashi Kokubun)
- Status changed from Open to Closed

11/14/2025 2/3

https://github.com/ruby/ruby/pull/5970

https://github.com/ruby/ruby/pull/5970 has already been merged.

11/14/2025 3/3

https://github.com/ruby/ruby/pull/5970
http://www.tcpdf.org

