
Ruby - Feature #14404

Adding writev support to IO#write_nonblock

01/26/2018 11:12 AM - janko (Janko Marohnić)

Status: Open

Priority: Normal

Assignee:

Target version:

Description

In Ruby 2.5 IO#write received writev support (https://github.com/ruby/ruby/commit/3efa7126e5e853f06cdd78d4d88837aeb72a9a3e),

allowing it to accept multiple arguments and utilize writev when available.

Would it be possible to add this feature to IO#write_nonblock as well? IO#write_nonblock is used by the HTTP.rb and Socketry gems

to implement their "write timeout" feature (the same way that IO#read_nonblock is used in Net::HTTP to implement "read timeout").

Since IO#write_nonblock doesn't yet support writev, at the moment it's not possible for HTTP.rb and Socketry to utilize writev when

the "write timeout" is specified.

History

#1 - 01/27/2018 01:02 AM - normalperson (Eric Wong)

janko.marohnic@gmail.com wrote:

Would it be possible to add this feature to IO#write_nonblock

as well? IO#write_nonblock is used by the HTTP.rb and Socketry

gems to implement their "write timeout" feature (the same way

that IO#read_nonblock is used in Net::HTTP to implement "read

timeout"). Since IO#write_nonblock doesn't yet support writev,

at the moment it's not possible for HTTP.rb and Socketry to

utilize writev when the "write timeout" is specified.

 How ugly/tedious would it be for the users to deal with partial

writes to use write_nonblock?

It's a lot easier with IO#write because of the write-in-full

expectation, so no new strings get created; pointers just get

updated in C.

Fwiw, one longer-term idea is to integrate Timeout into the VM,

so internal rb_io_wait_*able calls can see the timeout and not

rely on being interrupted as with current timeout.rb.

#2 - 01/29/2018 12:29 AM - janko (Janko Marohnić)

How ugly/tedious would it be for the users to deal with partial

writes to use write_nonblock?

 It does take a bit of work, but I believe the following code would do the job:

until chunks.empty?

 length = io.write_nonblock(*chunks)

 break unless chunks.sum(&:bytesize) > length

 while length > 0

 chunk = chunks.shift

 length -= chunk.bytesize

 chunks.unshift string.byteslice(length..-1) if length < 0

 end

end

 I remembered now that HTTP.rb and Socketry would probably only utilize

writev on "Transfer-Encoding: chunked" requests, which probably aren't used

very often (you'd probably use that only when uploading a file of unknown

length).

It's a lot easier with IO#write because of the write-in-full

11/14/2025 1/2

https://github.com/ruby/ruby/commit/3efa7126e5e853f06cdd78d4d88837aeb72a9a3e
mailto:janko.marohnic@gmail.com

expectation, so no new strings get created; pointers just get

updated in C.

 I agree, it would be ideal to be able to always use IO#write.

Fwiw, one longer-term idea is to integrate Timeout into the VM,

so internal rb_io_wait_*able calls can see the timeout and not

rely on being interrupted as with current timeout.rb.

 That sounds great!

Powered by TCPDF (www.tcpdf.org)

11/14/2025 2/2

http://www.tcpdf.org

