The transform inverting the sequence 
     |    (1)    | 
 
    into 
     |    (2)    | 
 
    where the sums are over all possible integers 
 that divide 
 and 
 is the Möbius function. 
  The logarithm of the cyclotomic polynomial 
     |    (3)    | 
 
    is closely related to the Möbius inversion formula. 
    See also
Cyclotomic Polynomial, 
Dirichlet Generating Function, 
Möbius Function, 
Möbius Transform Explore with Wolfram|Alpha
  References
Hardy, G. H. and Wright, W. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 91-93, 1979.Jones, G. A. and Jones, J. M. "The Möbius Inversion Formula." §8.3 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 148-152, 1998.Hunter, J. Number Theory. London: Oliver and Boyd, 1964.Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed. New York: Chelsea, pp. 577-580, 1974.Nagell, T. Introduction to Number Theory. New York: Wiley, pp. 28-29, 1951.Schroeder, M. R. Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity, 3rd ed. Séroul, R. Programming for Mathematicians. Berlin: Springer-Verlag, pp. 19-20, 2000.Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 7-8 and 223-225, 1991.Referenced on Wolfram|Alpha
Möbius Inversion Formula Cite this as:
  Weisstein, Eric W. "Möbius Inversion Formula." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/MoebiusInversionFormula.html 
 Subject classifications