There are a number of functions in mathematics commonly denoted with a Greek letter lambda. Examples of one-variable functions denoted with a lower case lambda include the Carmichael functions , Dirichlet lambda function , elliptic lambda function , and Liouville function . Examples of one-variable functions denoted with an upper case lambda include the Mangoldt function and the lambda function defined by Jahnke and Emden (1945).
The triangle function , illustrated above, is commonly denoted .
The lambda function defined by Jahnke and Emden (1945) is
(1)
where is a Bessel function of the first kind and is the gamma function . , and taking gives the special case
(2)
where is the jinc function .
A two-variable lambda function is defined as
(3)
where is the gamma function (McLachlan et al. 1950, p. 9; Prudnikov et al. 1990, p. 798; Gradshteyn and Ryzhik 2000, p. 1109).
See also Airy Functions ,
Carmichael Function ,
Dirichlet Lambda Function ,
Elliptic Lambda Function ,
Jinc Function ,
Liouville Function ,
Mangoldt Function ,
Mu Function ,
Nu Function ,
Triangle Function Explore with Wolfram|Alpha References Gradshteyn, I. S. and Ryzhik, I. M. "The Functions , , , , ." §9.64 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1109, 2000. Jahnke, E. and Emde, F. Tables of Functions with Formulae and Curves, 4th ed. New York: Dover, 1945. McLachlan, N. W. et al. Supplément au formulaire pour le calcul symbolique. Paris: L'Acad. des Sciences de Paris, Fasc. 113, p. 9, 1950. Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, 1990. Referenced on Wolfram|Alpha Lambda Function Cite this as: Weisstein, Eric W. "Lambda Function." From MathWorld --A Wolfram Resource. https://mathworld.wolfram.com/LambdaFunction.html
Subject classifications