See also Bürmann's Theorem ,
Maclaurin Series ,
Schur-Jabotinsky Theorem ,
Taylor Series ,
Teixeira's Theorem Explore with Wolfram|Alpha References Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 14, 1972. Goursat, E. A Course in Mathematical Analysis, Vol. 2: Functions of a Complex Variable & Differential Equations. New York: Dover, pp. 106 and 120, 1959. Henrici, P. "An Algebraic Proof of the Lagrange-Burmann Formula." J. Math. Anal. Appl. 8 , 218-224, 1964. Henrici, P. "The Lagrange-Bürmann Theorem." §1.9 in Applied and Computational Complex Analysis, Vol. 1: Power Series-Integration-Conformal Mapping-Location of Zeros. New York: Wiley, pp. 55-65, 1988. Joni, S. A. "Lagrange Inversion in Higher Dimensions and Umbral Operators." J. Linear Multi-Linear Algebra 6 , 111-121, 1978. Lagrange, J.-L. "Nouvelle méthode pour résoudre les problèmes indéterminés en nombres entiers." Mém. de l'Acad. Roy. des Sci. et Belles-Lettres de Berlin 24 , 1770. Reprinted in Oeuvres de Lagrange, tome 2, section deuxième: Mémoires extraits des recueils de l'Academie royale des sciences et Belles-Lettres de Berlin. Paris: Gauthier-Villars, pp. 655-726, 1868. Moulton, F. R. An Introduction to Celestial Mechanics, 2nd rev. ed. New York: Dover, p. 161, 1970. Popoff, M. "Sur le reste de la série de Lagrange." Comptes Rendus Herbdom. Séances de l'Acad. Sci. 53 , 795-798, 1861. Roman, S. "The Lagrange Inversion Formula." §5.2. in The Umbral Calculus. New York: Academic Press, pp. 138-140, 1984. Whittaker, E. T. and Watson, G. N. "Lagrange's Theorem." §7.32 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 132-133, 1990. Williamson, B. "Remainder in Lagrange's Series." §119 in An Elementary Treatise on the Differential Calculus, Containing the Theory of Plane Curves, with Numerous Examples, 9th ed. London: Longmans, pp. 158-159, 1895. Referenced on Wolfram|Alpha Lagrange Inversion Theorem Cite this as: Weisstein, Eric W. "Lagrange Inversion Theorem." From MathWorld --A Wolfram Resource. https://mathworld.wolfram.com/LagrangeInversionTheorem.html
Subject classifications