Compass and straightedgegeometric constructions dating back to Euclid were capable of inscribing regular polygons of 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, ..., sides. In 1796 (when he was 19 years old), Gauss gave a sufficient condition for a regular -gon to be constructible, which he also conjectured (but did not prove) to be necessary, thus showing that regular -gons were constructible for , 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, ... (OEIS A003401).
A complete enumeration of "constructible" polygons is given by those with central angles corresponding to so-called trigonometry angles.
Gardner (1977) and independently Watkins (Conway and Guy 1996, Kríek et al. 2001) noticed that the number of sides for constructible polygons with odd numbers of sides are given by the first 32 rows of the Sierpiński sieve interpreted as binary numbers, giving 1, 3, 5, 15, 17, 51, 85, 255, ... (OEIS A004729, Conway and Guy 1996, p. 140). In other words, every row is a product of distinct Fermat primes, with terms given by binary counting.