The (interior) bisector of an angle , also called the internal angle bisector (Kimberling 1998, pp. 11-12), is the line or line segment that divides the angle into two equal parts.
The angle bisectors meet at the incenter , which has trilinear coordinates 1:1:1.
The length of the bisector of angle in the above triangle is given by
where and .
The points , , and have trilinear coordinates , , and , respectively, and form the vertices of the incentral triangle .
See also Angle ,
Angle Bisector Theorem ,
Angle Trisection ,
Cyclic Quadrangle ,
Exterior Angle Bisector ,
Incenter ,
Incentral Triangle ,
Incircle ,
Isodynamic Points ,
Orthocentric System ,
Steiner-Lehmus Theorem Explore with Wolfram|Alpha References Altshiller-Court, N. College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, p. 18, 1952. Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 9-10, 1967. Dixon, R. Mathographics. New York: Dover, p. 19, 1991. Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129 , 1-295, 1998. Mackay, J. S. "Properties Concerned with the Angular Bisectors of a Triangle." Proc. Edinburgh Math. Soc. 13 , 37-102, 1895. Pedoe, D. Circles: A Mathematical View, rev. ed. Washington, DC: Math. Assoc. Amer., pp. xiv-xv, 1995. Referenced on Wolfram|Alpha Angle Bisector Cite this as: Weisstein, Eric W. "Angle Bisector." From MathWorld --A Wolfram Resource. https://mathworld.wolfram.com/AngleBisector.html
Subject classifications