Skip to main content
missprint
Source Link
M.González
  • 4.8k
  • 1
  • 18
  • 31

Denoting $Q_E:B\to B/E$ the quotient map, $Q_EB$$Q_EA$ is surjective. Then there exists $r>0$ such that $Q_E(B-\lambda)$$Q_E(A-\lambda)$ is surjective, hence $B=(A-\lambda)(B)+E$, for $|\lambda|<r$.

Denoting $Q_E:B\to B/E$ the quotient map, $Q_EB$ is surjective. Then there exists $r>0$ such that $Q_E(B-\lambda)$ is surjective, hence $B=(A-\lambda)(B)+E$, for $|\lambda|<r$.

Denoting $Q_E:B\to B/E$ the quotient map, $Q_EA$ is surjective. Then there exists $r>0$ such that $Q_E(A-\lambda)$ is surjective, hence $B=(A-\lambda)(B)+E$, for $|\lambda|<r$.

Source Link
M.González
  • 4.8k
  • 1
  • 18
  • 31

Denoting $Q_E:B\to B/E$ the quotient map, $Q_EB$ is surjective. Then there exists $r>0$ such that $Q_E(B-\lambda)$ is surjective, hence $B=(A-\lambda)(B)+E$, for $|\lambda|<r$.