Skip to main content
edited body
Source Link
Martin Sleziak
  • 4.8k
  • 4
  • 39
  • 42

Let $\Omega$ be a bounded domain in $\mathbb{R}^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose

$\int_{\Omega}(f_2-f_1)\varphi \, dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi \, dx =0$

for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y) \, dy$ and $\Phi$ is the fundamental solution of the laplacianLaplacian. Is $f_1=f_2$?

Let $\Omega$ be a bounded domain in $\mathbb{R}^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose

$\int_{\Omega}(f_2-f_1)\varphi \, dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi \, dx =0$

for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y) \, dy$ and $\Phi$ is the fundamental solution of the laplacian. Is $f_1=f_2$?

Let $\Omega$ be a bounded domain in $\mathbb{R}^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose

$\int_{\Omega}(f_2-f_1)\varphi \, dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi \, dx =0$

for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y) \, dy$ and $\Phi$ is the fundamental solution of the Laplacian. Is $f_1=f_2$?

edited tags
Link
Martin Sleziak
  • 4.8k
  • 4
  • 39
  • 42

Let $\Omega$ be a bounded domain in $R^3$$\mathbb{R}^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose

$\int_{\Omega}(f_2-f_1)\varphi dx=0$$\int_{\Omega}(f_2-f_1)\varphi \, dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi dx =0$$\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi \, dx =0$

for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y)dy$$\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y) \, dy$ and $\Phi$ is the fundamental solution of the laplacian. Is $f_1=f_2$?

Let $\Omega$ be a bounded domain in $R^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose

$\int_{\Omega}(f_2-f_1)\varphi dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi dx =0$

for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y)dy$ and $\Phi$ is the fundamental solution of the laplacian. Is $f_1=f_2$?

Let $\Omega$ be a bounded domain in $\mathbb{R}^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose

$\int_{\Omega}(f_2-f_1)\varphi \, dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi \, dx =0$

for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y) \, dy$ and $\Phi$ is the fundamental solution of the laplacian. Is $f_1=f_2$?

edited tags
Link
Willie Wong
  • 41.7k
  • 5
  • 97
  • 184
Loading
Source Link
Loading