Let $\Omega$ be a bounded domain in $\mathbb{R}^3$ and $f_1,f_2 \in C^2(\bar{\Omega})$. Suppose
$\int_{\Omega}(f_2-f_1)\varphi \, dx=0$ and $\int_{\Omega}(f_2 \Delta^{-1} f_2- f_1 \Delta^{-1} f_1)\varphi \, dx =0$
for all harmonic functions $\varphi$, where $\Delta^{-1}f=\int_{\Omega}f(y)\Phi(x-y) \, dy$ and $\Phi$ is the fundamental solution of the laplacianLaplacian. Is $f_1=f_2$?