Here is a generating-fuctionfunction proof of your conjectured identity (and an answer to question 2).
The main ingredient is a formula for the appearing symmetric sums.
Let $T(z)$ (the ``tree function'') be the formal power series satisfying $T(z)=z\,e^{T(z)}$.
If $F$ is a formal power series the coefficients of $G(z):=F(T(z))$ are given by (Lagrange inversion) $$[z^0]G(z)=[z^0] F(z) \mbox{ , } [z^k]G(z)=\tfrac{1}{k} [y^{k-1}] F^\prime(y)\,e^{ky} =[y^k](1-y)F(y)\,e^{ky}\mbox{ for } k\geq 1\;.$$ In particular (as is well known) $$T(z)=\sum_{n\geq 1}\frac{n^{n-1}}{n!}z^n \;\mbox{ and }\; \frac{T(z)}{1-T(z)}=\sum_{n\geq 1}\frac{n^{n}}{n!}z^n$$ Thus $T(z)\left(1+\frac{t}{1-T(z)}\right)=\sum_{n\geq 1} \frac{(1+tn)n^{n-1}}{n!}$. Therefore \begin{align*}S_{p,n}(K):&=\sum_{{k_1+\ldots +k_n=K \atop k_i\geq 1}} \sigma_p(k_1,\ldots,k_n)\prod_{i=1}^n \frac{k_i^{k_i-1}}{k_i!}\\ &=[t^p]\sum_{k_1+\ldots +k_n=K \atop k_i\geq 1} \prod_{i=1}^n \frac{(1+tk_i) k_i^{k_i-1}}{k_i!}\\ &=[t^p z^K]\, T(z)^n \left(1+\frac{t}{1-T(z)}\right)^n \end{align*} and $$S_{p,n}(K)={n \choose p} [z^k]\frac {T(z)^n}{(1-T(z))^p}={n \choose p}[y^K]\,y^n\, \frac{(1-y)}{(1-y)^p}\,e^{Ky}\;\;\;\;\;(*)$$$$S_{p,n}(K)={n \choose p} [z^K]\frac {T(z)^n}{(1-T(z))^p}={n \choose p}[y^K]\,y^n\, \frac{(1-y)}{(1-y)^p}\,e^{Ky}\;\;\;\;\;(*)$$
Now consider the sum ($m:=x-4$) $$R(K,m):=\sum_{n=0}^K\frac{(-1)^n}{n!}\bigg[\sum_{p=0}^n K^{n-p}\,\left(\prod_{r=1}^p (m+r)\right) S_{n,p}(K)\bigg]$$ Since $K\geq 1$ the sum remains unchanged if we start the summation at $n=0$ (all $S_{0,p}(K)$ are $0$). Using that and $(*)$ gives \begin{align*} R(K,m):&=\sum_{n=0}^K\frac{(-1)^n}{n!}\bigg[\sum_{p=0}^n K^{n-p}\,\left(\prod_{r=1}^p (m+r)\right) S_{n,p}(K)\bigg]\\ &=[y^K]\,(1-y) \sum_{n=0}^K\frac{(-1)^n}{n!}\sum_{p=0}^n K^{n-p}\,p!{m+p \choose p}{n \choose p}\frac{y^n}{(1-y)^p}\,e^{Ky}\\ &=[y^K]\,(1-y) \sum_{p=0}^K\sum_{n=p}^K\frac{(-1)^n}{(n-p)!} K^{n-p}{m+p \choose p}\frac{y^n}{(1-y)^p}\,e^{Ky}\\ &=[y^K]\,(1-y) \sum_{p=0}^K {m+p \choose p}\frac{(-1)^p y^p}{(1-y)^p}\bigg[\sum_{n=p}^K\frac{(-1)^{n-p}}{(n-p)!} K^{n-p}y^{n-p}\,e^{Ky}\bigg]\\ &=[y^K]\,(1-y) \sum_{p=0}^K {m+p \choose p}\frac{(-1)^p y^p}{(1-y)^p}\bigg[1 +\mathcal{O}(y^{K-p+1})\bigg]\\ \end{align*} where $\mathcal{O}(y^{K-p+1})$ denotes a formal power series which is a multiple of $y^{K-p+1}$.
Taking into account the respective factors $y^p$ the terms in these series do not contribute to the coefficient $[y^K]$. Therefore
\begin{align*} R(K,m)&=[y^K]\,(1-y) \sum_{p=0}^K {m+p \choose p}\frac{(-1)^p y^p}{(1-y)^p}\\ &=[y^K]\,(1-y) \sum_{p\geq 0} {m+p \choose p}\frac{(-1)^p y^p}{(1-y)^p}\\ &=[y^K]\,(1-y) \left(\frac{1}{1+\tfrac{y}{1-y}}\right)^{m+1}\\ &=[y^K]\,(1-y)^{m+2}\\ &=(-1)^K\,{m+2 \choose K},\,\mbox{ as desired }. \end{align*}