Skip to main content
added 93 characters in body
Source Link
Max Alekseyev
  • 38.4k
  • 5
  • 84
  • 167

If I'm not mistaken, this simple Sage code computes $F(n)$:

def F(n): P = Posets.IntegerPartitions(n) return sum( len(P.closed_interval(p,P.top())) for p in P ) 

The values of $F(n)$ for $n=0,1,\dots,20$ are:

1, 1, 3, 6, 14, 26, 55, 99, 192, 340, 619, 1063, 1873, 3129, 5308, 8718, 14385, 23116, 37346, 58949, 93294

UPDATE. I've added these counts as the sequence https://oeis.org/A265947 in the OEIS.

If I'm not mistaken, this simple Sage code computes $F(n)$:

def F(n): P = Posets.IntegerPartitions(n) return sum( len(P.closed_interval(p,P.top())) for p in P ) 

The values of $F(n)$ for $n=0,1,\dots,20$ are:

1, 1, 3, 6, 14, 26, 55, 99, 192, 340, 619, 1063, 1873, 3129, 5308, 8718, 14385, 23116, 37346, 58949, 93294

If I'm not mistaken, this simple Sage code computes $F(n)$:

def F(n): P = Posets.IntegerPartitions(n) return sum( len(P.closed_interval(p,P.top())) for p in P ) 

The values of $F(n)$ for $n=0,1,\dots,20$ are:

1, 1, 3, 6, 14, 26, 55, 99, 192, 340, 619, 1063, 1873, 3129, 5308, 8718, 14385, 23116, 37346, 58949, 93294

UPDATE. I've added these counts as the sequence https://oeis.org/A265947 in the OEIS.

Source Link
Max Alekseyev
  • 38.4k
  • 5
  • 84
  • 167

If I'm not mistaken, this simple Sage code computes $F(n)$:

def F(n): P = Posets.IntegerPartitions(n) return sum( len(P.closed_interval(p,P.top())) for p in P ) 

The values of $F(n)$ for $n=0,1,\dots,20$ are:

1, 1, 3, 6, 14, 26, 55, 99, 192, 340, 619, 1063, 1873, 3129, 5308, 8718, 14385, 23116, 37346, 58949, 93294