Skip to main content
edited to simplify the presentation, incorporating the hypothesis on the coefficients in the matrix
Source Link

is it possible to analytically evaluate the eigenvectors and the eigenvalues of a tridiagonal $n\times n$ matrix of the form :

\begin{pmatrix} a_1 & b_{1} & 0 & ... & 0 \\\ b_{1} & a_2 & b_{2} & & ... \\\ 0 & b_{2} & a_3 & ... & 0 \\\ ... & & ... & & b_{n-1} \\\ 0 & ... & 0 & b_{n-1} & a_n \end{pmatrix}

We take:

\begin{pmatrix}b_1=b_2=b_3=....=b_{n-1}=constant=b\end{pmatrix}\begin{pmatrix} 1 & b & 0 & ... & 0 \\\ b & 2 & b & & ... \\\ 0 & b & 3 & ... & 0 \\\ ... & & ... & & b \\\ 0 & ... & 0 & b & n \end{pmatrix}

andWhere \begin{pmatrix}a_n=n \end{pmatrix}$b$ is a constant.

Any help is appreciated.

is it possible to analytically evaluate the eigenvectors and the eigenvalues of a tridiagonal matrix of the form :

\begin{pmatrix} a_1 & b_{1} & 0 & ... & 0 \\\ b_{1} & a_2 & b_{2} & & ... \\\ 0 & b_{2} & a_3 & ... & 0 \\\ ... & & ... & & b_{n-1} \\\ 0 & ... & 0 & b_{n-1} & a_n \end{pmatrix}

We take:

\begin{pmatrix}b_1=b_2=b_3=....=b_{n-1}=constant=b\end{pmatrix}

and \begin{pmatrix}a_n=n \end{pmatrix}

Any help is appreciated.

is it possible to analytically evaluate the eigenvectors and the eigenvalues of a tridiagonal $n\times n$ matrix of the form :

\begin{pmatrix} 1 & b & 0 & ... & 0 \\\ b & 2 & b & & ... \\\ 0 & b & 3 & ... & 0 \\\ ... & & ... & & b \\\ 0 & ... & 0 & b & n \end{pmatrix}

Where $b$ is a constant.

Any help is appreciated.

Source Link
ram
  • 31
  • 2

Eigenvectors and eigenvalues of Tridiagonal matrix with varying diagonal elements

is it possible to analytically evaluate the eigenvectors and the eigenvalues of a tridiagonal matrix of the form :

\begin{pmatrix} a_1 & b_{1} & 0 & ... & 0 \\\ b_{1} & a_2 & b_{2} & & ... \\\ 0 & b_{2} & a_3 & ... & 0 \\\ ... & & ... & & b_{n-1} \\\ 0 & ... & 0 & b_{n-1} & a_n \end{pmatrix}

We take:

\begin{pmatrix}b_1=b_2=b_3=....=b_{n-1}=constant=b\end{pmatrix}

and \begin{pmatrix}a_n=n \end{pmatrix}

Any help is appreciated.