| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Data.MonoTraversable
Description
Type classes mirroring standard typeclasses, but working with monomorphic containers.
The motivation is that some commonly used data types (i.e., ByteString and Text) do not allow for instances of typeclasses like Functor and Foldable, since they are monomorphic structures. This module allows both monomorphic and polymorphic data types to be instances of the same typeclasses.
All of the laws for the polymorphic typeclasses apply to their monomorphic cousins. Thus, even though a MonoFunctor instance for Set could theoretically be defined, it is omitted since it could violate the functor law of .omap f . omap g = omap (f . g)
Note that all typeclasses have been prefixed with Mono, and functions have been prefixed with o. The mnemonic for o is "only one", or alternatively "it's mono, but m is overused in Haskell, so we'll use the second letter instead." (Agreed, it's not a great mangling scheme, input is welcome!)
Synopsis
- type family Element mono
- class MonoFunctor mono where
- replaceElem :: (MonoFunctor mono, Eq (Element mono)) => Element mono -> Element mono -> mono -> mono
- replaceElemStrictText :: Char -> Char -> Text -> Text
- replaceElemLazyText :: Char -> Char -> Text -> Text
- class MonoFoldable mono where
- ofoldMap :: Monoid m => (Element mono -> m) -> mono -> m
- ofoldr :: (Element mono -> b -> b) -> b -> mono -> b
- ofoldl' :: (a -> Element mono -> a) -> a -> mono -> a
- otoList :: mono -> [Element mono]
- oall :: (Element mono -> Bool) -> mono -> Bool
- oany :: (Element mono -> Bool) -> mono -> Bool
- onull :: mono -> Bool
- olength :: mono -> Int
- olength64 :: mono -> Int64
- ocompareLength :: Integral i => mono -> i -> Ordering
- otraverse_ :: Applicative f => (Element mono -> f b) -> mono -> f ()
- ofor_ :: Applicative f => mono -> (Element mono -> f b) -> f ()
- omapM_ :: Applicative m => (Element mono -> m ()) -> mono -> m ()
- oforM_ :: Applicative m => mono -> (Element mono -> m ()) -> m ()
- ofoldlM :: Monad m => (a -> Element mono -> m a) -> a -> mono -> m a
- ofoldMap1Ex :: Semigroup m => (Element mono -> m) -> mono -> m
- ofoldr1Ex :: (Element mono -> Element mono -> Element mono) -> mono -> Element mono
- ofoldl1Ex' :: (Element mono -> Element mono -> Element mono) -> mono -> Element mono
- headEx :: mono -> Element mono
- lastEx :: mono -> Element mono
- unsafeHead :: mono -> Element mono
- unsafeLast :: mono -> Element mono
- maximumByEx :: (Element mono -> Element mono -> Ordering) -> mono -> Element mono
- minimumByEx :: (Element mono -> Element mono -> Ordering) -> mono -> Element mono
- oelem :: Eq (Element mono) => Element mono -> mono -> Bool
- onotElem :: Eq (Element mono) => Element mono -> mono -> Bool
- headMay :: MonoFoldable mono => mono -> Maybe (Element mono)
- lastMay :: MonoFoldable mono => mono -> Maybe (Element mono)
- osum :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono
- oproduct :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono
- oand :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool
- oor :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool
- oconcatMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m
- ofold :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono
- oconcat :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono
- ofoldM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a
- osequence_ :: (Applicative m, MonoFoldable mono, Element mono ~ m ()) => mono -> m ()
- maximumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono
- minimumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono
- maximumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono)
- maximumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono)
- minimumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono)
- minimumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono)
- class (MonoFunctor mono, MonoFoldable mono) => MonoTraversable mono where
- otraverse :: Applicative f => (Element mono -> f (Element mono)) -> mono -> f mono
- omapM :: Applicative m => (Element mono -> m (Element mono)) -> mono -> m mono
- ofor :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono
- oforM :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono
- ofoldlUnwrap :: MonoFoldable mono => (x -> Element mono -> x) -> x -> (x -> b) -> mono -> b
- ofoldMUnwrap :: (Monad m, MonoFoldable mono) => (x -> Element mono -> m x) -> m x -> (x -> m b) -> mono -> m b
- class MonoPointed mono where
- class MonoFunctor mono => MonoComonad mono where
- class MonoFoldable mono => GrowingAppend mono
- ointercalate :: (MonoFoldable mono, Monoid (Element mono)) => Element mono -> mono -> Element mono
- newtype WrappedPoly f a = WrappedPoly {
- unwrapPoly :: f a
- data WrappedMono mono a where
- WrappedMono :: Element mono ~ a => mono -> WrappedMono mono a
- unwrapMono :: WrappedMono mono a -> mono
Documentation
type family Element mono Source #
Type family for getting the type of the elements of a monomorphic container.
Instances
class MonoFunctor mono where Source #
Monomorphic containers that can be mapped over.
Minimal complete definition
Nothing
Methods
omap :: (Element mono -> Element mono) -> mono -> mono Source #
Map over a monomorphic container
Instances
replaceElem :: (MonoFunctor mono, Eq (Element mono)) => Element mono -> Element mono -> mono -> mono Source #
replaces all replaceElem old newold elements with new.
Since: 1.0.1
class MonoFoldable mono where Source #
Monomorphic containers that can be folded.
Minimal complete definition
Nothing
Methods
ofoldMap :: Monoid m => (Element mono -> m) -> mono -> m Source #
Map each element of a monomorphic container to a Monoid and combine the results.
default ofoldMap :: (t a ~ mono, a ~ Element (t a), Foldable t, Monoid m) => (Element mono -> m) -> mono -> m Source #
ofoldr :: (Element mono -> b -> b) -> b -> mono -> b Source #
Right-associative fold of a monomorphic container.
default ofoldr :: (t a ~ mono, a ~ Element (t a), Foldable t) => (Element mono -> b -> b) -> b -> mono -> b Source #
ofoldl' :: (a -> Element mono -> a) -> a -> mono -> a Source #
Strict left-associative fold of a monomorphic container.
default ofoldl' :: (t b ~ mono, b ~ Element (t b), Foldable t) => (a -> Element mono -> a) -> a -> mono -> a Source #
otoList :: mono -> [Element mono] Source #
Convert a monomorphic container to a list.
oall :: (Element mono -> Bool) -> mono -> Bool Source #
Are all of the elements in a monomorphic container converted to booleans True?
oany :: (Element mono -> Bool) -> mono -> Bool Source #
Are any of the elements in a monomorphic container converted to booleans True?
onull :: mono -> Bool Source #
Is the monomorphic container empty?
olength :: mono -> Int Source #
Length of a monomorphic container, returns a Int.
olength64 :: mono -> Int64 Source #
Length of a monomorphic container, returns a Int64.
ocompareLength :: Integral i => mono -> i -> Ordering Source #
Compare the length of a monomorphic container and a given number.
otraverse_ :: Applicative f => (Element mono -> f b) -> mono -> f () Source #
Map each element of a monomorphic container to an action, evaluate these actions from left to right, and ignore the results.
ofor_ :: Applicative f => mono -> (Element mono -> f b) -> f () Source #
ofor_ is otraverse_ with its arguments flipped.
omapM_ :: Applicative m => (Element mono -> m ()) -> mono -> m () Source #
Map each element of a monomorphic container to a monadic action, evaluate these actions from left to right, and ignore the results.
oforM_ :: Applicative m => mono -> (Element mono -> m ()) -> m () Source #
ofoldlM :: Monad m => (a -> Element mono -> m a) -> a -> mono -> m a Source #
Monadic fold over the elements of a monomorphic container, associating to the left.
ofoldMap1Ex :: Semigroup m => (Element mono -> m) -> mono -> m Source #
Map each element of a monomorphic container to a semigroup, and combine the results.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See ofoldMap1 from Data.NonNull for a total version of this function.
ofoldr1Ex :: (Element mono -> Element mono -> Element mono) -> mono -> Element mono Source #
Right-associative fold of a monomorphic container with no base element.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See ofoldr1 from Data.NonNull for a total version of this function.
default ofoldr1Ex :: (t a ~ mono, a ~ Element (t a), Foldable t) => (Element mono -> Element mono -> Element mono) -> mono -> Element mono Source #
ofoldl1Ex' :: (Element mono -> Element mono -> Element mono) -> mono -> Element mono Source #
Strict left-associative fold of a monomorphic container with no base element.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See ofoldl1' from Data.NonNull for a total version of this function.
default ofoldl1Ex' :: (t a ~ mono, a ~ Element (t a), Foldable t) => (Element mono -> Element mono -> Element mono) -> mono -> Element mono Source #
headEx :: mono -> Element mono Source #
Get the first element of a monomorphic container.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See head from Data.NonNull for a total version of this function.
lastEx :: mono -> Element mono Source #
Get the last element of a monomorphic container.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See last from Data.NonNull for a total version of this function.
unsafeHead :: mono -> Element mono Source #
Equivalent to headEx.
unsafeLast :: mono -> Element mono Source #
Equivalent to lastEx.
maximumByEx :: (Element mono -> Element mono -> Ordering) -> mono -> Element mono Source #
Get the maximum element of a monomorphic container, using a supplied element ordering function.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See maximiumBy from Data.NonNull for a total version of this function.
minimumByEx :: (Element mono -> Element mono -> Ordering) -> mono -> Element mono Source #
Get the minimum element of a monomorphic container, using a supplied element ordering function.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See minimumBy from Data.NonNull for a total version of this function.
oelem :: Eq (Element mono) => Element mono -> mono -> Bool Source #
Checks if the monomorphic container includes the supplied element.
onotElem :: Eq (Element mono) => Element mono -> mono -> Bool Source #
Checks if the monomorphic container does not include the supplied element.
Instances
osum :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono Source #
osum computes the sum of the numbers of a monomorphic container.
oproduct :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono Source #
oproduct computes the product of the numbers of a monomorphic container.
oand :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool Source #
Are all of the elements True?
Since: 0.6.0
oor :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool Source #
Are any of the elements True?
Since: 0.6.0
oconcatMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m Source #
Synonym for ofoldMap
Since: 1.0.0
ofold :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono Source #
Monoidally combine all values in the container
Since: 1.0.0
oconcat :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono Source #
Synonym for ofold
Since: 1.0.0
ofoldM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a Source #
Synonym for ofoldlM
Since: 1.0.0
osequence_ :: (Applicative m, MonoFoldable mono, Element mono ~ m ()) => mono -> m () Source #
Perform all actions in the given container
Since: 1.0.0
maximumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono Source #
Get the minimum element of a monomorphic container.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See maximum from Data.NonNull for a total version of this function.
minimumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono Source #
Get the maximum element of a monomorphic container.
Note: this is a partial function. On an empty MonoFoldable, it will throw an exception.
See minimum from Data.NonNull for a total version of this function.
maximumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono) Source #
maximumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono) Source #
Safe version of maximumByEx.
Returns Nothing instead of throwing an exception when encountering an empty monomorphic container.
minimumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono) Source #
minimumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono) Source #
Safe version of minimumByEx.
Returns Nothing instead of throwing an exception when encountering an empty monomorphic container.
class (MonoFunctor mono, MonoFoldable mono) => MonoTraversable mono where Source #
Monomorphic containers that can be traversed from left to right.
NOTE: Due to limitations with the role system, GHC is yet unable to provide newtype-derivation of MonoTraversable. See https://stackoverflow.com/questions/49776924/newtype-deriving-issequence.
Minimal complete definition
Nothing
Methods
otraverse :: Applicative f => (Element mono -> f (Element mono)) -> mono -> f mono Source #
Map each element of a monomorphic container to an action, evaluate these actions from left to right, and collect the results.
default otraverse :: (Traversable t, mono ~ t a, a ~ Element mono, Applicative f) => (Element mono -> f (Element mono)) -> mono -> f mono Source #
omapM :: Applicative m => (Element mono -> m (Element mono)) -> mono -> m mono Source #
Map each element of a monomorphic container to a monadic action, evaluate these actions from left to right, and collect the results.
Instances
ofor :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono Source #
oforM :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono Source #
ofoldlUnwrap :: MonoFoldable mono => (x -> Element mono -> x) -> x -> (x -> b) -> mono -> b Source #
A strict left fold, together with an unwrap function.
This is convenient when the accumulator value is not the same as the final expected type. It is provided mainly for integration with the foldl package, to be used in conjunction with purely.
Since: 0.3.1
ofoldMUnwrap :: (Monad m, MonoFoldable mono) => (x -> Element mono -> m x) -> m x -> (x -> m b) -> mono -> m b Source #
A monadic strict left fold, together with an unwrap function.
Similar to foldlUnwrap, but allows monadic actions. To be used with impurely from foldl.
Since: 0.3.1
class MonoPointed mono where Source #
Typeclass for monomorphic containers that an element can be lifted into.
For any MonoFunctor, the following law holds:
omapf .opoint=opoint. f
Minimal complete definition
Nothing
Methods
opoint :: Element mono -> mono Source #
Lift an element into a monomorphic container.
opoint is the same as pure for an Applicative
Instances
class MonoFunctor mono => MonoComonad mono where Source #
Typeclass for monomorphic containers where it is always okay to "extract" a value from with oextract, and where you can extrapolate any "extracting" function to be a function on the whole part with oextend.
oextend and oextract should work together following the laws:
oextendoextract=idoextract.oextendf = foextendf .oextendg =oextend(f .oextendg)
As an intuition, uses oextend ff to "build up" a new mono with pieces from the old one received by f.
Methods
oextract :: mono -> Element mono Source #
Extract an element from mono. Can be thought of as a dual concept to opoint.
Instances
| MonoComonad (ViewL a) Source # | |
| MonoComonad (ViewR a) Source # | |
| IsSequence mono => MonoComonad (NonNull mono) Source # | |
class MonoFoldable mono => GrowingAppend mono Source #
Containers which, when two values are combined, the combined length is no less than the larger of the two inputs. In code:
olength (x <> y) >= max (olength x) (olength y)
This class has no methods, and is simply used to assert that this law holds, in order to provide guarantees of correctness (see, for instance, Data.NonNull).
This should have a Semigroup superclass constraint, however, due to Semigroup only recently moving to base, some packages do not provide instances.
Instances
ointercalate :: (MonoFoldable mono, Monoid (Element mono)) => Element mono -> mono -> Element mono Source #
intercalate seq seqs inserts seq in between seqs and concatenates the result.
Since: 1.0.0
newtype WrappedPoly f a Source #
Provides a MonoFoldable, MonoFunctor or MonoPointed for an arbitrary Foldable, Functor or Applicative.
Useful for, e.g., passing a Foldable type you don't own into a function that expects a MonoFoldable.
// package A data MyList a = MyList [a] deriving Foldable // package B process :: MonoFoldable mono => mono -> IO () // package C process (WrappedPoly (MyList []))
Since: 1.0.13.0
Constructors
| WrappedPoly | |
Fields
| |
Instances
data WrappedMono mono a where Source #
Provides a Foldable for an arbitrary MonoFoldable.
Since: 1.0.14.0
Constructors
| WrappedMono :: Element mono ~ a => mono -> WrappedMono mono a |
Instances
unwrapMono :: WrappedMono mono a -> mono Source #
Unwraps a WrappedMono.
Since: 1.0.14.0