| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Database.Esqueleto.Experimental
Description
This module contains a new way (introduced in 3.3.3.0) of using FROM in Haskell. The old method was a bit finicky and could permit runtime errors, and this new way is both significantly safer and much more powerful.
This syntax will become the default syntax exported from the library in version 3.6.0.0. To use the old syntax, see Database.Esqueleto.Legacy.
Synopsis
- from :: ToFrom a a' => a -> SqlQuery a'
- table :: forall ent. PersistEntity ent => From (SqlExpr (Entity ent))
- data Table a = Table
- newtype SubQuery a = SubQuery a
- selectQuery :: (SqlSelect a r, ToAlias a, ToAliasReference a) => SqlQuery a -> From a
- data a :& b = a :& b
- on :: ValidOnClause a => a -> (b -> SqlExpr (Value Bool)) -> (a, b -> SqlExpr (Value Bool))
- innerJoin :: (ToFrom a a', ToFrom b b', HasOnClause rhs (a' :& b'), rhs ~ (b, (a' :& b') -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& b')
- innerJoinLateral :: (ToFrom a a', HasOnClause rhs (a' :& b), SqlSelect b r, ToAlias b, ToAliasReference b, rhs ~ (a' -> SqlQuery b, (a' :& b) -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& b)
- leftJoin :: (ToFrom a a', ToFrom b b', ToMaybe b', HasOnClause rhs (a' :& ToMaybeT b'), rhs ~ (b, (a' :& ToMaybeT b') -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& ToMaybeT b')
- leftJoinLateral :: (ToFrom a a', SqlSelect b r, HasOnClause rhs (a' :& ToMaybeT b), ToAlias b, ToAliasReference b, ToMaybe b, rhs ~ (a' -> SqlQuery b, (a' :& ToMaybeT b) -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& ToMaybeT b)
- rightJoin :: (ToFrom a a', ToFrom b b', ToMaybe a', HasOnClause rhs (ToMaybeT a' :& b'), rhs ~ (b, (ToMaybeT a' :& b') -> SqlExpr (Value Bool))) => a -> rhs -> From (ToMaybeT a' :& b')
- fullOuterJoin :: (ToFrom a a', ToFrom b b', ToMaybe a', ToMaybe b', HasOnClause rhs (ToMaybeT a' :& ToMaybeT b'), rhs ~ (b, (ToMaybeT a' :& ToMaybeT b') -> SqlExpr (Value Bool))) => a -> rhs -> From (ToMaybeT a' :& ToMaybeT b')
- crossJoin :: (ToFrom a a', ToFrom b b') => a -> b -> From (a' :& b')
- crossJoinLateral :: (ToFrom a a', SqlSelect b r, ToAlias b, ToAliasReference b) => a -> (a' -> SqlQuery b) -> From (a' :& b)
- union_ :: Union_ a => a
- data Union a b = a `Union` b
- unionAll_ :: UnionAll_ a => a
- data UnionAll a b = a `UnionAll` b
- except_ :: (ToSqlSetOperation a a', ToSqlSetOperation b a') => a -> b -> SqlSetOperation a'
- data Except a b = a `Except` b
- intersect_ :: (ToSqlSetOperation a a', ToSqlSetOperation b a') => a -> b -> SqlSetOperation a'
- data Intersect a b = a `Intersect` b
- pattern SelectQuery :: p -> p
- with :: (ToAlias a, ToAliasReference a, SqlSelect a r) => SqlQuery a -> SqlQuery (From a)
- withRecursive :: (ToAlias a, ToAliasReference a, SqlSelect a r) => SqlQuery a -> UnionKind -> (From a -> SqlQuery a) -> SqlQuery (From a)
- newtype From a = From {}
- class ToMaybe a where
- class ToAlias a where
- type ToAliasT a = a
- class ToAliasReference a where
- toAliasReference :: Ident -> a -> SqlQuery a
- type ToAliasReferenceT a = a
- class ToSqlSetOperation a r | a -> r where
- toSqlSetOperation :: a -> SqlSetOperation r
- where_ :: SqlExpr (Value Bool) -> SqlQuery ()
- groupBy :: ToSomeValues a => a -> SqlQuery ()
- orderBy :: [SqlExpr OrderBy] -> SqlQuery ()
- rand :: SqlExpr OrderBy
- asc :: PersistField a => SqlExpr (Value a) -> SqlExpr OrderBy
- desc :: PersistField a => SqlExpr (Value a) -> SqlExpr OrderBy
- limit :: Int64 -> SqlQuery ()
- offset :: Int64 -> SqlQuery ()
- distinct :: SqlQuery a -> SqlQuery a
- distinctOn :: [SqlExpr DistinctOn] -> SqlQuery a -> SqlQuery a
- don :: SqlExpr (Value a) -> SqlExpr DistinctOn
- distinctOnOrderBy :: [SqlExpr OrderBy] -> SqlQuery a -> SqlQuery a
- having :: SqlExpr (Value Bool) -> SqlQuery ()
- locking :: LockingKind -> SqlQuery ()
- sub_select :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (Value a)
- (^.) :: forall typ val. (PersistEntity val, PersistField typ) => SqlExpr (Entity val) -> EntityField val typ -> SqlExpr (Value typ)
- (?.) :: (PersistEntity val, PersistField typ) => SqlExpr (Maybe (Entity val)) -> EntityField val typ -> SqlExpr (Value (Maybe typ))
- val :: PersistField typ => typ -> SqlExpr (Value typ)
- isNothing :: PersistField typ => SqlExpr (Value (Maybe typ)) -> SqlExpr (Value Bool)
- just :: SqlExpr (Value typ) -> SqlExpr (Value (Maybe typ))
- nothing :: SqlExpr (Value (Maybe typ))
- joinV :: SqlExpr (Value (Maybe (Maybe typ))) -> SqlExpr (Value (Maybe typ))
- withNonNull :: PersistField typ => SqlExpr (Value (Maybe typ)) -> (SqlExpr (Value typ) -> SqlQuery a) -> SqlQuery a
- countRows :: Num a => SqlExpr (Value a)
- count :: Num a => SqlExpr (Value typ) -> SqlExpr (Value a)
- countDistinct :: Num a => SqlExpr (Value typ) -> SqlExpr (Value a)
- not_ :: SqlExpr (Value Bool) -> SqlExpr (Value Bool)
- (==.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool)
- (>=.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool)
- (>.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool)
- (<=.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool)
- (<.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool)
- (!=.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool)
- (&&.) :: SqlExpr (Value Bool) -> SqlExpr (Value Bool) -> SqlExpr (Value Bool)
- (||.) :: SqlExpr (Value Bool) -> SqlExpr (Value Bool) -> SqlExpr (Value Bool)
- between :: PersistField a => SqlExpr (Value a) -> (SqlExpr (Value a), SqlExpr (Value a)) -> SqlExpr (Value Bool)
- (+.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a)
- (-.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a)
- (/.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a)
- (*.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a)
- random_ :: (PersistField a, Num a) => SqlExpr (Value a)
- round_ :: (PersistField a, Num a, PersistField b, Num b) => SqlExpr (Value a) -> SqlExpr (Value b)
- ceiling_ :: (PersistField a, Num a, PersistField b, Num b) => SqlExpr (Value a) -> SqlExpr (Value b)
- floor_ :: (PersistField a, Num a, PersistField b, Num b) => SqlExpr (Value a) -> SqlExpr (Value b)
- min_ :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value (Maybe a))
- max_ :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value (Maybe a))
- sum_ :: (PersistField a, PersistField b) => SqlExpr (Value a) -> SqlExpr (Value (Maybe b))
- avg_ :: (PersistField a, PersistField b) => SqlExpr (Value a) -> SqlExpr (Value (Maybe b))
- castNum :: (Num a, Num b) => SqlExpr (Value a) -> SqlExpr (Value b)
- castNumM :: (Num a, Num b) => SqlExpr (Value (Maybe a)) -> SqlExpr (Value (Maybe b))
- coalesce :: PersistField a => [SqlExpr (Value (Maybe a))] -> SqlExpr (Value (Maybe a))
- coalesceDefault :: PersistField a => [SqlExpr (Value (Maybe a))] -> SqlExpr (Value a) -> SqlExpr (Value a)
- lower_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s)
- upper_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s)
- trim_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s)
- ltrim_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s)
- rtrim_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s)
- length_ :: (SqlString s, Num a) => SqlExpr (Value s) -> SqlExpr (Value a)
- left_ :: (SqlString s, Num a) => (SqlExpr (Value s), SqlExpr (Value a)) -> SqlExpr (Value s)
- right_ :: (SqlString s, Num a) => (SqlExpr (Value s), SqlExpr (Value a)) -> SqlExpr (Value s)
- like :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) -> SqlExpr (Value Bool)
- ilike :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) -> SqlExpr (Value Bool)
- (%) :: SqlString s => SqlExpr (Value s)
- concat_ :: SqlString s => [SqlExpr (Value s)] -> SqlExpr (Value s)
- (++.) :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) -> SqlExpr (Value s)
- castString :: (SqlString s, SqlString r) => SqlExpr (Value s) -> SqlExpr (Value r)
- subList_select :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (ValueList a)
- valList :: PersistField typ => [typ] -> SqlExpr (ValueList typ)
- justList :: SqlExpr (ValueList typ) -> SqlExpr (ValueList (Maybe typ))
- in_ :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (ValueList typ) -> SqlExpr (Value Bool)
- notIn :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (ValueList typ) -> SqlExpr (Value Bool)
- exists :: SqlQuery () -> SqlExpr (Value Bool)
- notExists :: SqlQuery () -> SqlExpr (Value Bool)
- set :: PersistEntity val => SqlExpr (Entity val) -> [SqlExpr (Entity val) -> SqlExpr Update] -> SqlQuery ()
- (=.) :: (PersistEntity val, PersistField typ) => EntityField val typ -> SqlExpr (Value typ) -> SqlExpr (Entity val) -> SqlExpr Update
- (+=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update
- (-=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update
- (*=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update
- (/=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update
- case_ :: PersistField a => [(SqlExpr (Value Bool), SqlExpr (Value a))] -> SqlExpr (Value a) -> SqlExpr (Value a)
- toBaseId :: ToBaseId ent => SqlExpr (Value (Key ent)) -> SqlExpr (Value (Key (BaseEnt ent)))
- subSelect :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (Value (Maybe a))
- subSelectMaybe :: PersistField a => SqlQuery (SqlExpr (Value (Maybe a))) -> SqlExpr (Value (Maybe a))
- subSelectCount :: (Num a, PersistField a) => SqlQuery ignored -> SqlExpr (Value a)
- subSelectForeign :: (BackendCompatible SqlBackend (PersistEntityBackend val1), PersistEntity val1, PersistEntity val2, PersistField a) => SqlExpr (Entity val2) -> EntityField val2 (Key val1) -> (SqlExpr (Entity val1) -> SqlExpr (Value a)) -> SqlExpr (Value a)
- subSelectList :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (ValueList a)
- subSelectUnsafe :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (Value a)
- class ToBaseId ent where
- when_ :: expr (Value Bool) -> () -> expr a -> (expr (Value Bool), expr a)
- then_ :: ()
- else_ :: expr a -> expr a
- newtype Value a = Value {
- unValue :: a
- newtype ValueList a = ValueList a
- data OrderBy
- data DistinctOn
- data LockingKind
- class PersistField a => SqlString a
- data InnerJoin a b = a `InnerJoin` b
- data CrossJoin a b = a `CrossJoin` b
- data LeftOuterJoin a b = a `LeftOuterJoin` b
- data RightOuterJoin a b = a `RightOuterJoin` b
- data FullOuterJoin a b = a `FullOuterJoin` b
- data JoinKind
- data OnClauseWithoutMatchingJoinException = OnClauseWithoutMatchingJoinException String
- data SqlQuery a
- data SqlExpr a
- type SqlEntity ent = (PersistEntity ent, PersistEntityBackend ent ~ SqlBackend)
- select :: (SqlSelect a r, MonadIO m, SqlBackendCanRead backend) => SqlQuery a -> ReaderT backend m [r]
- selectOne :: (SqlSelect a r, MonadIO m, SqlBackendCanRead backend) => SqlQuery a -> ReaderT backend m (Maybe r)
- selectSource :: (SqlSelect a r, BackendCompatible SqlBackend backend, IsPersistBackend backend, PersistQueryRead backend, PersistStoreRead backend, PersistUniqueRead backend, MonadResource m) => SqlQuery a -> ConduitT () r (ReaderT backend m) ()
- delete :: (MonadIO m, SqlBackendCanWrite backend) => SqlQuery () -> ReaderT backend m ()
- deleteCount :: (MonadIO m, SqlBackendCanWrite backend) => SqlQuery () -> ReaderT backend m Int64
- update :: (MonadIO m, PersistEntity val, BackendCompatible SqlBackend (PersistEntityBackend val), SqlBackendCanWrite backend) => (SqlExpr (Entity val) -> SqlQuery ()) -> ReaderT backend m ()
- updateCount :: (MonadIO m, PersistEntity val, BackendCompatible SqlBackend (PersistEntityBackend val), SqlBackendCanWrite backend) => (SqlExpr (Entity val) -> SqlQuery ()) -> ReaderT backend m Int64
- insertSelect :: (MonadIO m, PersistEntity a, SqlBackendCanWrite backend) => SqlQuery (SqlExpr (Insertion a)) -> ReaderT backend m ()
- insertSelectCount :: (MonadIO m, PersistEntity a, SqlBackendCanWrite backend) => SqlQuery (SqlExpr (Insertion a)) -> ReaderT backend m Int64
- (<#) :: (a -> b) -> SqlExpr (Value a) -> SqlExpr (Insertion b)
- (<&>) :: SqlExpr (Insertion (a -> b)) -> SqlExpr (Value a) -> SqlExpr (Insertion b)
- renderQueryToText :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) => Mode -> SqlQuery a -> ReaderT backend m (Text, [PersistValue])
- renderQuerySelect :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) => SqlQuery a -> ReaderT backend m (Text, [PersistValue])
- renderQueryUpdate :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) => SqlQuery a -> ReaderT backend m (Text, [PersistValue])
- renderQueryDelete :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) => SqlQuery a -> ReaderT backend m (Text, [PersistValue])
- renderQueryInsertInto :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) => SqlQuery a -> ReaderT backend m (Text, [PersistValue])
- valkey :: (ToBackendKey SqlBackend entity, PersistField (Key entity)) => Int64 -> SqlExpr (Value (Key entity))
- valJ :: PersistField (Key entity) => Value (Key entity) -> SqlExpr (Value (Key entity))
- associateJoin :: forall e1 e0. Ord (Key e0) => [(Entity e0, e1)] -> Map (Key e0) (e0, [e1])
- deleteKey :: (PersistStore backend, BaseBackend backend ~ PersistEntityBackend val, MonadIO m, PersistEntity val) => Key val -> ReaderT backend m ()
- transactionUndoWithIsolation :: forall (m :: Type -> Type). MonadIO m => IsolationLevel -> ReaderT SqlBackend m ()
- transactionUndo :: forall (m :: Type -> Type). MonadIO m => ReaderT SqlBackend m ()
- transactionSaveWithIsolation :: forall (m :: Type -> Type). MonadIO m => IsolationLevel -> ReaderT SqlBackend m ()
- transactionSave :: forall (m :: Type -> Type). MonadIO m => ReaderT SqlBackend m ()
- runSqlCommand :: SqlPersistT IO () -> Migration
- addMigrations :: CautiousMigration -> Migration
- addMigration :: Bool -> Sql -> Migration
- reportErrors :: [Text] -> Migration
- reportError :: Text -> Migration
- migrate :: [EntityDef] -> EntityDef -> Migration
- runMigrationUnsafeQuiet :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m [Text]
- runMigrationUnsafe :: forall (m :: Type -> Type). MonadIO m => Migration -> ReaderT SqlBackend m ()
- runMigrationSilent :: forall (m :: Type -> Type). MonadUnliftIO m => Migration -> ReaderT SqlBackend m [Text]
- runMigrationQuiet :: forall (m :: Type -> Type). MonadIO m => Migration -> ReaderT SqlBackend m [Text]
- runMigration :: forall (m :: Type -> Type). MonadIO m => Migration -> ReaderT SqlBackend m ()
- getMigration :: forall (m :: Type -> Type). (MonadIO m, HasCallStack) => Migration -> ReaderT SqlBackend m [Sql]
- showMigration :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m [Text]
- printMigration :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m ()
- parseMigration' :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m CautiousMigration
- parseMigration :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m (Either [Text] CautiousMigration)
- type Sql = Text
- type CautiousMigration = [(Bool, Sql)]
- type Migration = WriterT [Text] (WriterT CautiousMigration (ReaderT SqlBackend IO)) ()
- newtype PersistUnsafeMigrationException = PersistUnsafeMigrationException [(Bool, Sql)]
- decorateSQLWithLimitOffset :: Text -> (Int, Int) -> Text -> Text
- orderClause :: PersistEntity val => Maybe FilterTablePrefix -> SqlBackend -> [SelectOpt val] -> Text
- filterClauseWithVals :: PersistEntity val => Maybe FilterTablePrefix -> SqlBackend -> [Filter val] -> (Text, [PersistValue])
- filterClause :: PersistEntity val => Maybe FilterTablePrefix -> SqlBackend -> [Filter val] -> Text
- data FilterTablePrefix
- fieldDBName :: PersistEntity record => EntityField record typ -> FieldNameDB
- getFieldName :: forall record typ (m :: Type -> Type) backend. (PersistEntity record, PersistEntityBackend record ~ SqlBackend, BackendCompatible SqlBackend backend, Monad m) => EntityField record typ -> ReaderT backend m Text
- tableDBName :: PersistEntity record => record -> EntityNameDB
- getTableName :: forall record (m :: Type -> Type) backend. (PersistEntity record, BackendCompatible SqlBackend backend, Monad m) => record -> ReaderT backend m Text
- fromSqlKey :: ToBackendKey SqlBackend record => Key record -> Int64
- toSqlKey :: ToBackendKey SqlBackend record => Int64 -> Key record
- withRawQuery :: forall (m :: Type -> Type) a. MonadIO m => Text -> [PersistValue] -> ConduitM [PersistValue] Void IO a -> ReaderT SqlBackend m a
- close' :: BackendCompatible SqlBackend backend => backend -> IO ()
- withSqlConn :: forall backend m a. (MonadUnliftIO m, MonadLoggerIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> (backend -> m a) -> m a
- createSqlPoolWithConfig :: (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> ConnectionPoolConfig -> m (Pool backend)
- createSqlPool :: forall backend m. (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> Int -> m (Pool backend)
- withSqlPoolWithConfig :: forall backend m a. (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> ConnectionPoolConfig -> (Pool backend -> m a) -> m a
- withSqlPool :: forall backend m a. (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> Int -> (Pool backend -> m a) -> m a
- liftSqlPersistMPool :: forall backend m a. (MonadIO m, BackendCompatible SqlBackend backend) => ReaderT backend (NoLoggingT (ResourceT IO)) a -> Pool backend -> m a
- runSqlPersistMPool :: BackendCompatible SqlBackend backend => ReaderT backend (NoLoggingT (ResourceT IO)) a -> Pool backend -> IO a
- runSqlPersistM :: BackendCompatible SqlBackend backend => ReaderT backend (NoLoggingT (ResourceT IO)) a -> backend -> IO a
- runSqlConnWithIsolation :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> backend -> IsolationLevel -> m a
- runSqlConn :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> backend -> m a
- acquireSqlConnWithIsolation :: (MonadReader backend m, BackendCompatible SqlBackend backend) => IsolationLevel -> m (Acquire backend)
- acquireSqlConn :: (MonadReader backend m, BackendCompatible SqlBackend backend) => m (Acquire backend)
- runSqlPoolWithExtensibleHooks :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> Maybe IsolationLevel -> SqlPoolHooks m backend -> m a
- runSqlPoolWithHooks :: forall backend m a before after onException. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> Maybe IsolationLevel -> (backend -> m before) -> (backend -> m after) -> (backend -> SomeException -> m onException) -> m a
- runSqlPoolNoTransaction :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> Maybe IsolationLevel -> m a
- runSqlPoolWithIsolation :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> IsolationLevel -> m a
- runSqlPool :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> m a
- rawSql :: forall a (m :: Type -> Type) backend. (RawSql a, MonadIO m, BackendCompatible SqlBackend backend) => Text -> [PersistValue] -> ReaderT backend m [a]
- getStmtConn :: SqlBackend -> Text -> IO Statement
- rawExecuteCount :: forall (m :: Type -> Type) backend. (MonadIO m, BackendCompatible SqlBackend backend) => Text -> [PersistValue] -> ReaderT backend m Int64
- rawExecute :: forall (m :: Type -> Type) backend. (MonadIO m, BackendCompatible SqlBackend backend) => Text -> [PersistValue] -> ReaderT backend m ()
- rawQueryRes :: forall (m1 :: Type -> Type) (m2 :: Type -> Type) env. (MonadIO m1, MonadIO m2, BackendCompatible SqlBackend env) => Text -> [PersistValue] -> ReaderT env m1 (Acquire (ConduitM () [PersistValue] m2 ()))
- rawQuery :: forall (m :: Type -> Type) env. (MonadResource m, MonadReader env m, BackendCompatible SqlBackend env) => Text -> [PersistValue] -> ConduitM () [PersistValue] m ()
- unPrefix :: forall (prefix :: Symbol) record. EntityWithPrefix prefix record -> Entity record
- class RawSql a where
- rawSqlCols :: (Text -> Text) -> a -> (Int, [Text])
- rawSqlColCountReason :: a -> String
- rawSqlProcessRow :: [PersistValue] -> Either Text a
- newtype EntityWithPrefix (prefix :: Symbol) record = EntityWithPrefix {
- unEntityWithPrefix :: Entity record
- class PersistField a => PersistFieldSql a where
- toJsonText :: ToJSON j => j -> Text
- mkColumns :: [EntityDef] -> EntityDef -> BackendSpecificOverrides -> ([Column], [UniqueDef], [ForeignDef])
- defaultAttribute :: [FieldAttr] -> Maybe Text
- emptyBackendSpecificOverrides :: BackendSpecificOverrides
- setBackendSpecificForeignKeyName :: (EntityNameDB -> FieldNameDB -> ConstraintNameDB) -> BackendSpecificOverrides -> BackendSpecificOverrides
- getBackendSpecificForeignKeyName :: BackendSpecificOverrides -> Maybe (EntityNameDB -> FieldNameDB -> ConstraintNameDB)
- data BackendSpecificOverrides
- defaultConnectionPoolConfig :: ConnectionPoolConfig
- data Column = Column {
- cName :: !FieldNameDB
- cNull :: !Bool
- cSqlType :: !SqlType
- cDefault :: !(Maybe Text)
- cGenerated :: !(Maybe Text)
- cDefaultConstraintName :: !(Maybe ConstraintNameDB)
- cMaxLen :: !(Maybe Integer)
- cReference :: !(Maybe ColumnReference)
- data ColumnReference = ColumnReference {}
- data PersistentSqlException
- type SqlPersistT = ReaderT SqlBackend
- type SqlPersistM = SqlPersistT (NoLoggingT (ResourceT IO))
- type ConnectionPool = Pool SqlBackend
- data ConnectionPoolConfig = ConnectionPoolConfig {}
- newtype Single a = Single {
- unSingle :: a
- readToUnknown :: forall (m :: Type -> Type) a. Monad m => ReaderT SqlReadBackend m a -> ReaderT SqlBackend m a
- readToWrite :: forall (m :: Type -> Type) a. Monad m => ReaderT SqlReadBackend m a -> ReaderT SqlWriteBackend m a
- writeToUnknown :: forall (m :: Type -> Type) a. Monad m => ReaderT SqlWriteBackend m a -> ReaderT SqlBackend m a
- newtype SqlReadBackend = SqlReadBackend {}
- newtype SqlWriteBackend = SqlWriteBackend {}
- type SqlBackendCanRead backend = (BackendCompatible SqlBackend backend, PersistQueryRead backend, PersistStoreRead backend, PersistUniqueRead backend)
- type SqlBackendCanWrite backend = (SqlBackendCanRead backend, PersistQueryWrite backend, PersistStoreWrite backend, PersistUniqueWrite backend)
- type SqlReadT (m :: Type -> Type) a = forall backend. SqlBackendCanRead backend => ReaderT backend m a
- type SqlWriteT (m :: Type -> Type) a = forall backend. SqlBackendCanWrite backend => ReaderT backend m a
- type IsSqlBackend backend = (IsPersistBackend backend, BaseBackend backend ~ SqlBackend)
- type PersistUnique a = PersistUniqueWrite a
- type PersistStore a = PersistStoreWrite a
- selectKeys :: forall record backend (m :: Type -> Type). (PersistQueryRead backend, MonadResource m, PersistRecordBackend record backend, MonadReader backend m) => [Filter record] -> [SelectOpt record] -> ConduitM () (Key record) m ()
- class (PersistCore backend, PersistStoreRead backend) => PersistQueryRead backend where
- selectSourceRes :: forall record (m1 :: Type -> Type) (m2 :: Type -> Type). (PersistRecordBackend record backend, MonadIO m1, MonadIO m2) => [Filter record] -> [SelectOpt record] -> ReaderT backend m1 (Acquire (ConduitM () (Entity record) m2 ()))
- selectFirst :: forall (m :: Type -> Type) record. (MonadIO m, PersistRecordBackend record backend) => [Filter record] -> [SelectOpt record] -> ReaderT backend m (Maybe (Entity record))
- selectKeysRes :: forall (m1 :: Type -> Type) (m2 :: Type -> Type) record. (MonadIO m1, MonadIO m2, PersistRecordBackend record backend) => [Filter record] -> [SelectOpt record] -> ReaderT backend m1 (Acquire (ConduitM () (Key record) m2 ()))
- class (PersistQueryRead backend, PersistStoreWrite backend) => PersistQueryWrite backend where
- updateWhere :: forall (m :: Type -> Type) record. (MonadIO m, PersistRecordBackend record backend) => [Filter record] -> [Update record] -> ReaderT backend m ()
- deleteWhere :: forall (m :: Type -> Type) record. (MonadIO m, PersistRecordBackend record backend) => [Filter record] -> ReaderT backend m ()
- checkUniqueUpdateable :: forall record backend (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, PersistUniqueRead backend) => Entity record -> ReaderT backend m (Maybe (Unique record))
- checkUnique :: forall record backend (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, PersistUniqueRead backend) => record -> ReaderT backend m (Maybe (Unique record))
- replaceUnique :: forall record backend (m :: Type -> Type). (MonadIO m, Eq (Unique record), PersistRecordBackend record backend, PersistUniqueWrite backend) => Key record -> record -> ReaderT backend m (Maybe (Unique record))
- getByValue :: forall record (m :: Type -> Type) backend. (MonadIO m, PersistUniqueRead backend, PersistRecordBackend record backend, AtLeastOneUniqueKey record) => record -> ReaderT backend m (Maybe (Entity record))
- onlyUnique :: forall record backend (m :: Type -> Type). (MonadIO m, PersistUniqueWrite backend, PersistRecordBackend record backend, OnlyOneUniqueKey record) => record -> ReaderT backend m (Unique record)
- insertUniqueEntity :: forall record backend (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, PersistUniqueWrite backend, SafeToInsert record) => record -> ReaderT backend m (Maybe (Entity record))
- insertBy :: forall record backend (m :: Type -> Type). (MonadIO m, PersistUniqueWrite backend, PersistRecordBackend record backend, AtLeastOneUniqueKey record, SafeToInsert record) => record -> ReaderT backend m (Either (Entity record) (Key record))
- onlyOneUniqueDef :: (OnlyOneUniqueKey record, Monad proxy) => proxy record -> UniqueDef
- class PersistStoreRead backend => PersistUniqueRead backend where
- class (PersistUniqueRead backend, PersistStoreWrite backend) => PersistUniqueWrite backend where
- deleteBy :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Unique record -> ReaderT backend m ()
- insertUnique :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => record -> ReaderT backend m (Maybe (Key record))
- upsert :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, OnlyOneUniqueKey record, SafeToInsert record) => record -> [Update record] -> ReaderT backend m (Entity record)
- upsertBy :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => Unique record -> record -> [Update record] -> ReaderT backend m (Entity record)
- putMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => [record] -> ReaderT backend m ()
- class PersistEntity record => OnlyOneUniqueKey record where
- onlyUniqueP :: record -> Unique record
- type NoUniqueKeysError ty = (('Text "The entity " :<>: 'ShowType ty) :<>: 'Text " does not have any unique keys.") :$$: ('Text "The function you are trying to call requires a unique key " :<>: 'Text "to be defined on the entity.")
- type MultipleUniqueKeysError ty = ((('Text "The entity " :<>: 'ShowType ty) :<>: 'Text " has multiple unique keys.") :$$: ('Text "The function you are trying to call requires only a single " :<>: 'Text "unique key.")) :$$: (('Text "There is probably a variant of the function with 'By' " :<>: 'Text "appended that will allow you to select a unique key ") :<>: 'Text "for the operation.")
- class PersistEntity record => AtLeastOneUniqueKey record where
- requireUniquesP :: record -> NonEmpty (Unique record)
- data SqlBackend
- insertRecord :: forall record backend (m :: Type -> Type). (PersistEntityBackend record ~ BaseBackend backend, PersistEntity record, MonadIO m, PersistStoreWrite backend, SafeToInsert record, HasCallStack) => record -> ReaderT backend m record
- getEntity :: forall e backend (m :: Type -> Type). (PersistStoreRead backend, PersistRecordBackend e backend, MonadIO m) => Key e -> ReaderT backend m (Maybe (Entity e))
- insertEntity :: forall e backend (m :: Type -> Type). (PersistStoreWrite backend, PersistRecordBackend e backend, SafeToInsert e, MonadIO m, HasCallStack) => e -> ReaderT backend m (Entity e)
- belongsToJust :: forall ent1 ent2 backend (m :: Type -> Type). (PersistStoreRead backend, PersistEntity ent1, PersistRecordBackend ent2 backend, MonadIO m) => (ent1 -> Key ent2) -> ent1 -> ReaderT backend m ent2
- belongsTo :: forall ent1 ent2 backend (m :: Type -> Type). (PersistStoreRead backend, PersistEntity ent1, PersistRecordBackend ent2 backend, MonadIO m) => (ent1 -> Maybe (Key ent2)) -> ent1 -> ReaderT backend m (Maybe ent2)
- getJustEntity :: forall record backend (m :: Type -> Type). (PersistEntityBackend record ~ BaseBackend backend, MonadIO m, PersistEntity record, PersistStoreRead backend) => Key record -> ReaderT backend m (Entity record)
- getJust :: forall record backend (m :: Type -> Type). (PersistStoreRead backend, PersistRecordBackend record backend, MonadIO m) => Key record -> ReaderT backend m record
- liftPersist :: (MonadIO m, MonadReader backend m) => ReaderT backend IO b -> m b
- withCompatibleBackend :: forall sup sub (m :: Type -> Type) a. BackendCompatible sup sub => ReaderT sup m a -> ReaderT sub m a
- withBaseBackend :: forall backend (m :: Type -> Type) a. HasPersistBackend backend => ReaderT (BaseBackend backend) m a -> ReaderT backend m a
- type family BaseBackend backend
- class HasPersistBackend backend where
- type BaseBackend backend
- persistBackend :: backend -> BaseBackend backend
- class HasPersistBackend backend => IsPersistBackend backend
- class BackendCompatible sup sub where
- projectBackend :: sub -> sup
- type PersistRecordBackend record backend = (PersistEntity record, PersistEntityBackend record ~ BaseBackend backend)
- class (PersistEntity record, PersistEntityBackend record ~ backend, PersistCore backend) => ToBackendKey backend record where
- toBackendKey :: Key record -> BackendKey backend
- fromBackendKey :: BackendKey backend -> Key record
- data family BackendKey backend
- class PersistCore backend where
- data BackendKey backend
- class (Show (BackendKey backend), Read (BackendKey backend), Eq (BackendKey backend), Ord (BackendKey backend), PersistCore backend, PersistField (BackendKey backend), ToJSON (BackendKey backend), FromJSON (BackendKey backend)) => PersistStoreRead backend where
- class (Show (BackendKey backend), Read (BackendKey backend), Eq (BackendKey backend), Ord (BackendKey backend), PersistStoreRead backend, PersistField (BackendKey backend), ToJSON (BackendKey backend), FromJSON (BackendKey backend)) => PersistStoreWrite backend where
- insert :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => record -> ReaderT backend m (Key record)
- insert_ :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => record -> ReaderT backend m ()
- insertMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => [record] -> ReaderT backend m [Key record]
- insertMany_ :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => [record] -> ReaderT backend m ()
- insertEntityMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => [Entity record] -> ReaderT backend m ()
- insertKey :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> record -> ReaderT backend m ()
- repsert :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> record -> ReaderT backend m ()
- repsertMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => [(Key record, record)] -> ReaderT backend m ()
- replace :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> record -> ReaderT backend m ()
- updateGet :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> [Update record] -> ReaderT backend m record
- fromPersistValueJSON :: FromJSON a => PersistValue -> Either Text a
- toPersistValueJSON :: ToJSON a => a -> PersistValue
- entityIdFromJSON :: (PersistEntity record, FromJSON record) => Value -> Parser (Entity record)
- entityIdToJSON :: (PersistEntity record, ToJSON record) => Entity record -> Value
- keyValueEntityFromJSON :: (PersistEntity record, FromJSON record) => Value -> Parser (Entity record)
- keyValueEntityToJSON :: (PersistEntity record, ToJSON record) => Entity record -> Value
- entityValues :: PersistEntity record => Entity record -> [PersistValue]
- tabulateEntity :: PersistEntity record => (forall a. EntityField record a -> a) -> Entity record
- data family Unique record
- data family EntityField record :: Type -> Type
- data family Key record
- type family PersistEntityBackend record
- class (PersistField (Key record), ToJSON (Key record), FromJSON (Key record), Show (Key record), Read (Key record), Eq (Key record), Ord (Key record)) => PersistEntity record where
- type PersistEntityBackend record
- data Key record
- data EntityField record :: Type -> Type
- data Unique record
- keyToValues :: Key record -> [PersistValue]
- keyFromValues :: [PersistValue] -> Either Text (Key record)
- persistIdField :: EntityField record (Key record)
- entityDef :: proxy record -> EntityDef
- persistFieldDef :: EntityField record typ -> FieldDef
- toPersistFields :: record -> [PersistValue]
- fromPersistValues :: [PersistValue] -> Either Text record
- tabulateEntityA :: Applicative f => (forall a. EntityField record a -> f a) -> f (Entity record)
- persistUniqueKeys :: record -> [Unique record]
- persistUniqueToFieldNames :: Unique record -> NonEmpty (FieldNameHS, FieldNameDB)
- persistUniqueToValues :: Unique record -> [PersistValue]
- fieldLens :: EntityField record field -> forall (f :: Type -> Type). Functor f => (field -> f field) -> Entity record -> f (Entity record)
- keyFromRecordM :: Maybe (record -> Key record)
- type family BackendSpecificUpdate backend record
- data FilterValue typ where
- FilterValue :: forall typ. typ -> FilterValue typ
- FilterValues :: forall typ. [typ] -> FilterValue typ
- UnsafeValue :: forall a typ. PersistField a => a -> FilterValue typ
- data Entity record = Entity {}
- class SymbolToField (sym :: Symbol) rec typ | sym rec -> typ where
- symbolToField :: EntityField rec typ
- class SafeToInsert a
- class PersistField a where
- toPersistValue :: a -> PersistValue
- fromPersistValue :: PersistValue -> Either Text a
- newtype OverflowNatural = OverflowNatural {}
- overEntityFields :: ([FieldDef] -> [FieldDef]) -> EntityDef -> EntityDef
- getEntityKeyFields :: EntityDef -> NonEmpty FieldDef
- setEntityIdDef :: EntityIdDef -> EntityDef -> EntityDef
- setEntityId :: FieldDef -> EntityDef -> EntityDef
- getEntityIdField :: EntityDef -> Maybe FieldDef
- getEntityId :: EntityDef -> EntityIdDef
- isEntitySum :: EntityDef -> Bool
- getEntityFieldsDatabase :: EntityDef -> [FieldDef]
- getEntityFields :: EntityDef -> [FieldDef]
- getEntityForeignDefs :: EntityDef -> [ForeignDef]
- getEntityComments :: EntityDef -> Maybe Text
- setEntityDBName :: EntityNameDB -> EntityDef -> EntityDef
- getEntityExtra :: EntityDef -> Map Text [[Text]]
- getEntityDBName :: EntityDef -> EntityNameDB
- getEntityHaskellName :: EntityDef -> EntityNameHS
- getEntityUniques :: EntityDef -> [UniqueDef]
- getEntityUniquesNoPrimaryKey :: EntityDef -> [UniqueDef]
- isFieldMaybe :: FieldDef -> Bool
- isFieldNullable :: FieldDef -> IsNullable
- addFieldAttr :: FieldAttr -> FieldDef -> FieldDef
- overFieldAttrs :: ([FieldAttr] -> [FieldAttr]) -> FieldDef -> FieldDef
- setFieldAttrs :: [FieldAttr] -> FieldDef -> FieldDef
- type LogFunc = Loc -> LogSource -> LogLevel -> LogStr -> IO ()
- data InsertSqlResult
- data Statement = Statement {
- stmtFinalize :: IO ()
- stmtReset :: IO ()
- stmtExecute :: [PersistValue] -> IO Int64
- stmtQuery :: forall (m :: Type -> Type). MonadIO m => [PersistValue] -> Acquire (ConduitM () [PersistValue] m ())
- renderCascadeAction :: CascadeAction -> Text
- renderFieldCascade :: FieldCascade -> Text
- noCascade :: FieldCascade
- isHaskellField :: FieldDef -> Bool
- isFieldNotGenerated :: FieldDef -> Bool
- parseFieldAttrs :: [Text] -> [FieldAttr]
- keyAndEntityFields :: EntityDef -> NonEmpty FieldDef
- entityPrimary :: EntityDef -> Maybe CompositeDef
- entitiesPrimary :: EntityDef -> NonEmpty FieldDef
- fieldAttrsContainsNullable :: [FieldAttr] -> IsNullable
- data Checkmark
- data IsNullable
- data WhyNullable
- data EntityDef
- data EntityIdDef
- type ExtraLine = [Text]
- type Attr = Text
- data FieldAttr
- data FieldType
- data ReferenceDef
- data EmbedEntityDef = EmbedEntityDef {}
- data EmbedFieldDef = EmbedFieldDef {
- emFieldDB :: FieldNameDB
- emFieldEmbed :: Maybe (Either SelfEmbed EntityNameHS)
- data UniqueDef = UniqueDef {
- uniqueHaskell :: !ConstraintNameHS
- uniqueDBName :: !ConstraintNameDB
- uniqueFields :: !(NonEmpty (FieldNameHS, FieldNameDB))
- uniqueAttrs :: ![Attr]
- data CompositeDef = CompositeDef {
- compositeFields :: !(NonEmpty FieldDef)
- compositeAttrs :: ![Attr]
- type ForeignFieldDef = (FieldNameHS, FieldNameDB)
- data ForeignDef = ForeignDef {
- foreignRefTableHaskell :: !EntityNameHS
- foreignRefTableDBName :: !EntityNameDB
- foreignConstraintNameHaskell :: !ConstraintNameHS
- foreignConstraintNameDBName :: !ConstraintNameDB
- foreignFieldCascade :: !FieldCascade
- foreignFields :: ![(ForeignFieldDef, ForeignFieldDef)]
- foreignAttrs :: ![Attr]
- foreignNullable :: Bool
- foreignToPrimary :: Bool
- data FieldCascade = FieldCascade {
- fcOnUpdate :: !(Maybe CascadeAction)
- fcOnDelete :: !(Maybe CascadeAction)
- data CascadeAction
- = Cascade
- | Restrict
- | SetNull
- | SetDefault
- data PersistException
- data SqlType
- data PersistFilter
- data UpdateException
- data PersistUpdate
- data FieldDef = FieldDef {
- fieldHaskell :: !FieldNameHS
- fieldDB :: !FieldNameDB
- fieldType :: !FieldType
- fieldSqlType :: !SqlType
- fieldAttrs :: ![FieldAttr]
- fieldStrict :: !Bool
- fieldReference :: !ReferenceDef
- fieldCascade :: !FieldCascade
- fieldComments :: !(Maybe Text)
- fieldGenerated :: !(Maybe Text)
- fieldIsImplicitIdColumn :: !Bool
- data IsolationLevel
- fromPersistValueText :: PersistValue -> Either Text Text
- data PersistValue where
- PersistText Text
- PersistByteString ByteString
- PersistInt64 Int64
- PersistDouble Double
- PersistRational Rational
- PersistBool Bool
- PersistDay Day
- PersistTimeOfDay TimeOfDay
- PersistUTCTime UTCTime
- PersistNull
- PersistList [PersistValue]
- PersistMap [(Text, PersistValue)]
- PersistObjectId ByteString
- PersistArray [PersistValue]
- PersistLiteral_ LiteralType ByteString
- pattern PersistDbSpecific :: ByteString -> PersistValue
- pattern PersistLiteralEscaped :: ByteString -> PersistValue
- pattern PersistLiteral :: ByteString -> PersistValue
- data LiteralType
- class DatabaseName a where
- escapeWith :: (Text -> str) -> a -> str
- newtype FieldNameDB = FieldNameDB {}
- newtype FieldNameHS = FieldNameHS {}
- newtype EntityNameHS = EntityNameHS {}
- newtype EntityNameDB = EntityNameDB {}
- newtype ConstraintNameDB = ConstraintNameDB {}
- newtype ConstraintNameHS = ConstraintNameHS {}
- type family PersistConfigPool c
- type family PersistConfigBackend c :: (Type -> Type) -> Type -> Type
- class PersistConfig c where
- type PersistConfigBackend c :: (Type -> Type) -> Type -> Type
- type PersistConfigPool c
- loadConfig :: Value -> Parser c
- applyEnv :: c -> IO c
- createPoolConfig :: c -> IO (PersistConfigPool c)
- runPool :: MonadUnliftIO m => c -> PersistConfigBackend c m a -> PersistConfigPool c -> m a
Setup
If you're already using Database.Esqueleto, then you can get started using this module just by changing your imports slightly, as well as enabling the TypeApplications extension.
{-# LANGUAGE TypeApplications #-} ... import Database.Esqueleto.Experimental Note: Prior to esqueleto-3.3.4.0, the Database.Esqueleto.Experimental module did not reexport Data.Esqueleto.
Introduction
This module is fully backwards-compatible extension to the esqueleto EDSL that expands subquery functionality and enables SQL set operations to be written directly in Haskell. Specifically, this enables:
- Subqueries in
JOINstatements UNIONUNIONALLINTERSECTEXCEPT
As a consequence of this, several classes of runtime errors are now caught at compile time. This includes missing on clauses and improper handling of Maybe values in outer joins.
This module can be used in conjunction with the main Database.Esqueleto module, but doing so requires qualified imports to avoid ambiguous definitions of on and from, which are defined in both modules.
Below we will give an overview of how to use this module and the features it enables.
A New Syntax
This module introduces a new syntax that serves to enable the aforementioned features. This new syntax also changes how joins written in the esqueleto EDSL to more closely resemble the underlying SQL.
For our examples, we'll use a schema similar to the one in the Getting Started section of Database.Esqueleto:
share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persist| Person name String age Int Maybe deriving Eq Show BlogPost title String authorId PersonId deriving Eq Show Follow follower PersonId followed PersonId deriving Eq Show |]
Example 1: Simple select
Let's select all people who are named "John".
Database.Esqueleto:
select $ from $ \people -> do where_ (people ^. PersonName ==. val "John") pure people
Database.Esqueleto.Experimental:
select $ do people <- from $ table @Person where_ (people ^. PersonName ==. val "John") pure people
Example 2: Select with join
Let's select all people and their blog posts who are over the age of 18.
Database.Esqueleto:
select $ from $ \(people `LeftOuterJoin` blogPosts) -> do on (people ^. PersonId ==. blogPosts ?. BlogPostAuthorId) where_ (people ^. PersonAge >. val 18) pure (people, blogPosts)
Database.Esqueleto.Experimental:
Here we use the :& operator to pattern match against the joined tables.
select $ do (people :& blogPosts) <- from $ table @Person `leftJoin` table @BlogPost `on` (\(people :& blogPosts) -> people ^. PersonId ==. blogPosts ?. BlogPostAuthorId) where_ (people ^. PersonAge >. val 18) pure (people, blogPosts)
Example 3: Select with multi-table join
Let's select all people who follow a person named "John", including the name of each follower.
Database.Esqueleto:
select $ from $ \( people1 `InnerJoin` followers `InnerJoin` people2 ) -> do on (people1 ^. PersonId ==. followers ^. FollowFollowed) on (followers ^. FollowFollower ==. people2 ^. PersonId) where_ (people1 ^. PersonName ==. val "John") pure (followers, people2)
Database.Esqueleto.Experimental:
In this version, with each successive on clause, only the tables we have already joined into are in scope, so we must pattern match accordingly. In this case, in the second innerJoin, we do not use the first Person reference, so we use _ as a placeholder to ignore it. This prevents a possible runtime error where a table is referenced before it appears in the sequence of JOINs.
select $ do (people1 :& followers :& people2) <- from $ table @Person `innerJoin` table @Follow `on` (\(people1 :& followers) -> people1 ^. PersonId ==. followers ^. FollowFollowed) `innerJoin` table @Person `on` (\(_ :& followers :& people2) -> followers ^. FollowFollower ==. people2 ^. PersonId) where_ (people1 ^. PersonName ==. val "John") pure (followers, people2)
Example 4: Counting results of a subquery
Let's count the number of people who have posted at least 10 posts
Database.Esqueleto:
select $ pure $ subSelectCount $ from $ \( people `InnerJoin` blogPosts ) -> do on (people ^. PersonId ==. blogPosts ^. BlogPostAuthorId) groupBy (people ^. PersonId) having ((count $ blogPosts ^. BlogPostId) >. val 10) pure people
Database.Esqueleto.Experimental:
select $ do peopleWithPosts <- from $ do (people :& blogPosts) <- from $ table @Person `innerJoin` table @BlogPost `on` (\(p :& bP) -> p ^. PersonId ==. bP ^. BlogPostAuthorId) groupBy (people ^. PersonId) having ((count $ blogPosts ^. BlogPostId) >. val 10) pure people pure $ count (peopleWithPosts ^. PersonId)
We now have the ability to refactor this
Example 5: Sorting the results of a UNION with limits
Out of all of the posts created by a person and the people they follow, generate a list of the first 25 posts, sorted alphabetically.
Database.Esqueleto:
Since UNION is not supported, this requires using rawSql. (Not shown)
Database.Esqueleto.Experimental:
Since this module supports all set operations (see SqlSetOperation), we can use Union to write this query.
select $ do (authors, blogPosts) <- from $ (do (author :& blogPost) <- from $ table @Person `innerJoin` table @BlogPost `on` (\(a :& bP) -> a ^. PersonId ==. bP ^. BlogPostAuthorId) where_ (author ^. PersonId ==. val currentPersonId) pure (author, blogPost) ) `union_` (do (follow :& blogPost :& author) <- from $ table @Follow `innerJoin` table @BlogPost `on` (\(f :& bP) -> f ^. FollowFollowed ==. bP ^. BlogPostAuthorId) `innerJoin` table @Person `on` (\(_ :& bP :& a) -> bP ^. BlogPostAuthorId ==. a ^. PersonId) where_ (follow ^. FollowFollower ==. val currentPersonId) pure (author, blogPost) ) orderBy [ asc (blogPosts ^. BlogPostTitle) ] limit 25 pure (authors, blogPosts)
Example 6: LATERAL JOIN
As of version 3.4.0.0, lateral subquery joins are supported.
select $ do (salesPerson :& maxSaleAmount :& maxSaleCustomerName) <- from $ table @SalesPerson `crossJoinLateral` (\salesPerson -> do sales <- from $ table @Sale where_ $ sales ^. SaleSalesPersonId ==. salesPerson ^. SalesPersonId pure $ max_ (sales ^. SaleAmount) ) `crossJoinLateral` (\(salesPerson :& maxSaleAmount) -> do sales <- from $ table @Sale where_ $ sales ^. SaleSalesPersonId ==. salesPerson ^. SalesPersonId &&. sales ^. SaleAmount ==. maxSaleAmount pure $ sales ^. SaleCustomerName) ) pure (salesPerson ^. SalesPersonName, maxSaleAmount, maxSaleCustomerName)
This is the equivalent to the following SQL (example taken from the MySQL Lateral Derived Table documentation):
SELECT salesperson.name, max_sale.amount, max_sale_customer.customer_name FROM salesperson, -- calculate maximum size, cache it in transient derived table max_sale LATERAL (SELECT MAX(amount) AS amount FROM all_sales WHERE all_sales.salesperson_id = salesperson.id) AS max_sale, LATERAL (SELECT customer_name FROM all_sales WHERE all_sales.salesperson_id = salesperson.id AND all_sales.amount = -- the cached maximum size max_sale.amount) AS max_sale_customer;
Documentation
Basic Queries
from :: ToFrom a a' => a -> SqlQuery a' Source #
FROM clause, used to bring entities into scope.
Internally, this function uses the From datatype. Unlike the old from, this does not take a function as a parameter, but rather a value that represents a JOIN tree constructed out of instances of From. This implementation eliminates certain types of runtime errors by preventing the construction of invalid SQL (e.g. illegal nested-from).
table :: forall ent. PersistEntity ent => From (SqlExpr (Entity ent)) Source #
Bring a PersistEntity into scope from a table
select $ from $ table @People
Since: 3.5.0.0
Deprecated: @since 3.5.0.0 - use table instead
Deprecated: Since: 3.4.0.0 - It is no longer necessary to tag SqlQuery values with SubQuery
selectQuery :: (SqlSelect a r, ToAlias a, ToAliasReference a) => SqlQuery a -> From a Source #
Select from a subquery, often used in conjuction with joins but can be used without any joins. Because SqlQuery has a ToFrom instance you probably dont need to use this function directly.
select $ p <- from $ selectQuery do p <- from $ table @Person limit 5 orderBy [ asc p ^. PersonAge ] ...
Since: 3.5.0.0
Joins
A left-precedence pair. Pronounced "and". Used to represent expressions that have been joined together.
The precedence behavior can be demonstrated by:
a :& b :& c == ((a :& b) :& c)
See the examples at the beginning of this module to see how this operator is used in JOIN operations.
Constructors
| a :& b infixl 2 |
Instances
on :: ValidOnClause a => a -> (b -> SqlExpr (Value Bool)) -> (a, b -> SqlExpr (Value Bool)) infix 9 Source #
An ON clause that describes how two tables are related. This should be used as an infix operator after a JOIN. For example,
select $ from $ table @Person `innerJoin` table @BlogPost `on` (\(p :& bP) -> p ^. PersonId ==. bP ^. BlogPostAuthorId)
innerJoin :: (ToFrom a a', ToFrom b b', HasOnClause rhs (a' :& b'), rhs ~ (b, (a' :& b') -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& b') infixl 2 Source #
INNER JOIN
Used as an infix operator `innerJoin`
select $ from $ table @Person `innerJoin` table @BlogPost `on` (\(p :& bp) -> p ^. PersonId ==. bp ^. BlogPostAuthorId)
Since: 3.5.0.0
innerJoinLateral :: (ToFrom a a', HasOnClause rhs (a' :& b), SqlSelect b r, ToAlias b, ToAliasReference b, rhs ~ (a' -> SqlQuery b, (a' :& b) -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& b) infixl 2 Source #
INNER JOIN LATERAL
A Lateral subquery join allows the joined query to reference entities from the left hand side of the join. Discards rows that don't match the on clause
Used as an infix operator `innerJoinLateral`
See example 6
Since: 3.5.0.0
leftJoin :: (ToFrom a a', ToFrom b b', ToMaybe b', HasOnClause rhs (a' :& ToMaybeT b'), rhs ~ (b, (a' :& ToMaybeT b') -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& ToMaybeT b') infixl 2 Source #
LEFT OUTER JOIN
Join where the right side may not exist. If the on clause fails then the right side will be NULL'ed Because of this the right side needs to be handled as a Maybe
Used as an infix operator `leftJoin`
select $ from $ table @Person `leftJoin` table @BlogPost `on` (\(p :& bp) -> p ^. PersonId ==. bp ?. BlogPostAuthorId)
Since: 3.5.0.0
leftJoinLateral :: (ToFrom a a', SqlSelect b r, HasOnClause rhs (a' :& ToMaybeT b), ToAlias b, ToAliasReference b, ToMaybe b, rhs ~ (a' -> SqlQuery b, (a' :& ToMaybeT b) -> SqlExpr (Value Bool))) => a -> rhs -> From (a' :& ToMaybeT b) infixl 2 Source #
LEFT OUTER JOIN LATERAL
Lateral join where the right side may not exist. In the case that the query returns nothing or the on clause fails the right side of the join will be NULL'ed Because of this the right side needs to be handled as a Maybe
Used as an infix operator `leftJoinLateral`
See example 6 for how to use LATERAL
Since: 3.5.0.0
rightJoin :: (ToFrom a a', ToFrom b b', ToMaybe a', HasOnClause rhs (ToMaybeT a' :& b'), rhs ~ (b, (ToMaybeT a' :& b') -> SqlExpr (Value Bool))) => a -> rhs -> From (ToMaybeT a' :& b') infixl 2 Source #
RIGHT OUTER JOIN
Join where the left side may not exist. If the on clause fails then the left side will be NULL'ed Because of this the left side needs to be handled as a Maybe
Used as an infix operator `rightJoin`
select $ from $ table @Person `rightJoin` table @BlogPost `on` (\(p :& bp) -> p ?. PersonId ==. bp ^. BlogPostAuthorId)
Since: 3.5.0.0
fullOuterJoin :: (ToFrom a a', ToFrom b b', ToMaybe a', ToMaybe b', HasOnClause rhs (ToMaybeT a' :& ToMaybeT b'), rhs ~ (b, (ToMaybeT a' :& ToMaybeT b') -> SqlExpr (Value Bool))) => a -> rhs -> From (ToMaybeT a' :& ToMaybeT b') infixl 2 Source #
FULL OUTER JOIN
Join where both sides of the join may not exist. Because of this the result needs to be handled as a Maybe
Used as an infix operator `fullOuterJoin`
select $ from $ table @Person `fullOuterJoin` table @BlogPost `on` (\(p :& bp) -> p ?. PersonId ==. bp ?. BlogPostAuthorId)
Since: 3.5.0.0
crossJoin :: (ToFrom a a', ToFrom b b') => a -> b -> From (a' :& b') infixl 2 Source #
CROSS JOIN
Used as an infix `crossJoin`
select $ do from $ table @Person `crossJoin` table @BlogPost
Since: 3.5.0.0
crossJoinLateral :: (ToFrom a a', SqlSelect b r, ToAlias b, ToAliasReference b) => a -> (a' -> SqlQuery b) -> From (a' :& b) infixl 2 Source #
CROSS JOIN LATERAL
A Lateral subquery join allows the joined query to reference entities from the left hand side of the join.
Used as an infix operator `crossJoinLateral`
See example 6
Since: 3.5.0.0
Set Operations
Data type that represents SQL set operations. This includes UNION, UNION ALL, EXCEPT, and INTERSECT. These types form a binary tree, with SqlQuery values on the leaves.
Each function corresponding to the aforementioned set operations can be used as an infix in a from to help with readability and lead to code that closely resembles the underlying SQL. For example,
select $ from $ (do a <- from $ table A pure $ a ^. ASomeCol ) `union_` (do b <- from $ table B pure $ b ^. BSomeCol ) is translated into
SELECT * FROM ( (SELECT a.some_col FROM a) UNION (SELECT b.some_col FROM b) )
union_ :: Union_ a => a Source #
UNION SQL set operation. Can be used as an infix function between SqlQuery values.
Constructors
| a `Union` b |
Instances
| ToSqlSetOperation a a' => ToSqlSetOperation (Union a a) a' Source # | |
Defined in Database.Esqueleto.Experimental.From.SqlSetOperation Methods toSqlSetOperation :: Union a a -> SqlSetOperation a' Source # | |
unionAll_ :: UnionAll_ a => a Source #
UNION ALL SQL set operation. Can be used as an infix function between SqlQuery values.
Constructors
| a `UnionAll` b |
Instances
| ToSqlSetOperation a a' => ToSqlSetOperation (UnionAll a a) a' Source # | |
Defined in Database.Esqueleto.Experimental.From.SqlSetOperation Methods toSqlSetOperation :: UnionAll a a -> SqlSetOperation a' Source # | |
except_ :: (ToSqlSetOperation a a', ToSqlSetOperation b a') => a -> b -> SqlSetOperation a' Source #
EXCEPT SQL set operation. Can be used as an infix function between SqlQuery values.
Constructors
| a `Except` b |
Instances
| ToSqlSetOperation a a' => ToSqlSetOperation (Except a a) a' Source # | |
Defined in Database.Esqueleto.Experimental.From.SqlSetOperation Methods toSqlSetOperation :: Except a a -> SqlSetOperation a' Source # | |
intersect_ :: (ToSqlSetOperation a a', ToSqlSetOperation b a') => a -> b -> SqlSetOperation a' Source #
INTERSECT SQL set operation. Can be used as an infix function between SqlQuery values.
Deprecated: Since: 3.4.0.0 - Use the intersect_ function instead of the Intersect data constructor
Constructors
| a `Intersect` b | Deprecated: Since: 3.4.0.0 - Use the |
Instances
| ToSqlSetOperation a a' => ToSqlSetOperation (Intersect a a) a' Source # | |
Defined in Database.Esqueleto.Experimental.From.SqlSetOperation Methods toSqlSetOperation :: Intersect a a -> SqlSetOperation a' Source # | |
pattern SelectQuery :: p -> p Source #
Deprecated: Since: 3.4.0.0 - It is no longer necessary to tag SqlQuery values with SelectQuery
Common Table Expressions
with :: (ToAlias a, ToAliasReference a, SqlSelect a r) => SqlQuery a -> SqlQuery (From a) Source #
WITH clause used to introduce a Common Table Expression (CTE). CTEs are supported in most modern SQL engines and can be useful in performance tuning. In Esqueleto, CTEs should be used as a subquery memoization tactic. When writing plain SQL, CTEs are sometimes used to organize the SQL code, in Esqueleto, this is better achieved through function that return SqlQuery values.
select $ do cte <- with subQuery cteResult <- from cte where_ $ cteResult ... pure cteResult
WARNING: In some SQL engines using a CTE can diminish performance. In these engines the CTE is treated as an optimization fence. You should always verify that using a CTE will in fact improve your performance over a regular subquery.
Notably, in PostgreSQL prior to version 12, CTEs are always fully calculated, which can potentially significantly pessimize queries. As of PostgreSQL 12, non-recursive and side-effect-free queries may be inlined and optimized accordingly if not declared MATERIALIZED to get the previous behaviour. See the PostgreSQL CTE documentation, section Materialization, for more information.
Since: 3.4.0.0
withRecursive :: (ToAlias a, ToAliasReference a, SqlSelect a r) => SqlQuery a -> UnionKind -> (From a -> SqlQuery a) -> SqlQuery (From a) Source #
WITH RECURSIVE allows one to make a recursive subquery, which can reference itself. Like WITH, this is supported in most modern SQL engines. Useful for hierarchical, self-referential data, like a tree of data.
select $ do cte <- withRecursive (do person <- from $ table @Person where_ $ person ^. PersonId ==. val personId pure person ) unionAll_ (\self -> do (p :& f :& p2 :& pSelf) <- from self `innerJoin` $ table @Follow `on` (\(p :& f) -> p ^. PersonId ==. f ^. FollowFollower) `innerJoin` $ table @Person `on` (\(p :& f :& p2) -> f ^. FollowFollowed ==. p2 ^. PersonId) `leftJoin` self `on` (\(_ :& _ :& p2 :& pSelf) -> just (p2 ^. PersonId) ==. pSelf ?. PersonId) where_ $ isNothing (pSelf ?. PersonId) groupBy (p2 ^. PersonId) pure p2 ) from cte
Since: 3.4.0.0
Internals
Data type defining the From language. This should not constructed directly in application code.
A From is a SqlQuery which returns a reference to the result of calling from and a function that produces a portion of a FROM clause. This gets passed to the FromRaw FromClause constructor directly when converting from a From to a SqlQuery using from
Since: 3.5.0.0
class ToMaybe a where Source #
Instances
| ToMaybe (SqlExpr (Value a)) Source # | |
| ToMaybe (SqlExpr (Entity a)) Source # | |
| ToMaybe (SqlExpr (Maybe a)) Source # | |
| (ToMaybe a, ToMaybe b) => ToMaybe (a :& b) Source # | |
| (ToMaybe a, ToMaybe b) => ToMaybe (a, b) Source # | |
| (ToMaybe a, ToMaybe b, ToMaybe c) => ToMaybe (a, b, c) Source # | |
| (ToMaybe a, ToMaybe b, ToMaybe c, ToMaybe d) => ToMaybe (a, b, c, d) Source # | |
| (ToMaybe a, ToMaybe b, ToMaybe c, ToMaybe d, ToMaybe e) => ToMaybe (a, b, c, d, e) Source # | |
| (ToMaybe a, ToMaybe b, ToMaybe c, ToMaybe d, ToMaybe e, ToMaybe f) => ToMaybe (a, b, c, d, e, f) Source # | |
| (ToMaybe a, ToMaybe b, ToMaybe c, ToMaybe d, ToMaybe e, ToMaybe f, ToMaybe g) => ToMaybe (a, b, c, d, e, f, g) Source # | |
| (ToMaybe a, ToMaybe b, ToMaybe c, ToMaybe d, ToMaybe e, ToMaybe f, ToMaybe g, ToMaybe h) => ToMaybe (a, b, c, d, e, f, g, h) Source # | |
class ToAlias a where Source #
Instances
Deprecated: This type alias doesn't do anything. Please delete it. Will be removed in the next release.
class ToAliasReference a where Source #
Methods
toAliasReference :: Ident -> a -> SqlQuery a Source #
Instances
type ToAliasReferenceT a = a Source #
Deprecated: This type alias doesn't do anything. Please delete it. Will be removed in the next release.
class ToSqlSetOperation a r | a -> r where Source #
Type class to support direct use of SqlQuery in a set operation tree
Since: 3.5.0.0
Methods
toSqlSetOperation :: a -> SqlSetOperation r Source #
Instances
The Normal Stuff
groupBy :: ToSomeValues a => a -> SqlQuery () Source #
GROUP BY clause. You can enclose multiple columns in a tuple.
select $from\(foo `InnerJoin` bar) -> doon(foo^.FooBarId==.bar^.BarId)groupBy(bar^.BarId, bar^.BarName) return (bar^.BarId, bar^.BarName, countRows)
With groupBy you can sort by aggregate functions, like so (we used let to restrict the more general countRows to SqlSqlExpr (Value Int) to avoid ambiguity---the second use of countRows has its type restricted by the :: Int below):
r <- select $from\(foo `InnerJoin` bar) -> doon(foo^.FooBarId==.bar^.BarId)groupBy$ bar^.BarName let countRows' =countRowsorderBy[asccountRows'] return (bar^.BarName, countRows') forM_ r $ \(Valuename,Valuecount) -> do print name print (count :: Int)
Need more columns?
The ToSomeValues class is defined for SqlExpr and tuples of SqlExprs. We only have definitions for up to 8 elements in a tuple right now, so it's possible that you may need to have more than 8 elements.
For example, consider a query with a groupBy call like this:
groupBy (e0, e1, e2, e3, e4, e5, e6, e7)
This is the biggest you can get with a single tuple. However, you can easily nest the tuples to add more:
groupBy ((e0, e1, e2, e3, e4, e5, e6, e7), e8, e9)
orderBy :: [SqlExpr OrderBy] -> SqlQuery () Source #
ORDER BY clause. See also asc and desc.
Multiple calls to orderBy get concatenated on the final query, including distinctOnOrderBy.
rand :: SqlExpr OrderBy Source #
Deprecated: Since 2.6.0: rand ordering function is not uniform across all databases! To avoid accidental partiality it will be removed in the next major version.
ORDER BY random() clause.
Since: 1.3.10
asc :: PersistField a => SqlExpr (Value a) -> SqlExpr OrderBy Source #
Ascending order of this field or SqlExpression.
desc :: PersistField a => SqlExpr (Value a) -> SqlExpr OrderBy Source #
Descending order of this field or SqlExpression.
distinctOn :: [SqlExpr DistinctOn] -> SqlQuery a -> SqlQuery a Source #
DISTINCT ON. Change the current SELECT into SELECT DISTINCT ON (SqlExpressions). For example:
select $from\foo ->distinctOn[don(foo ^. FooName),don(foo ^. FooState)] $ do ...
You can also chain different calls to distinctOn. The above is equivalent to:
select $from\foo ->distinctOn[don(foo ^. FooName)] $distinctOn[don(foo ^. FooState)] $ do ...
Each call to distinctOn adds more SqlExpressions. Calls to distinctOn override any calls to distinct.
Note that PostgreSQL requires the SqlExpressions on DISTINCT ON to be the first ones to appear on a ORDER BY. This is not managed automatically by esqueleto, keeping its spirit of trying to be close to raw SQL.
Supported by PostgreSQL only.
Since: 2.2.4
don :: SqlExpr (Value a) -> SqlExpr DistinctOn Source #
Erase an SqlExpression's type so that it's suitable to be used by distinctOn.
Since: 2.2.4
distinctOnOrderBy :: [SqlExpr OrderBy] -> SqlQuery a -> SqlQuery a Source #
A convenience function that calls both distinctOn and orderBy. In other words,
distinctOnOrderBy [asc foo, desc bar, desc quux] $ do ... is the same as:
distinctOn[don foo, don bar, don quux] $ doorderBy[asc foo, desc bar, desc quux] ...
Since: 2.2.4
locking :: LockingKind -> SqlQuery () Source #
Add a locking clause to the query. Please read LockingKind documentation and your RDBMS manual.
If multiple calls to locking are made on the same query, the last one is used.
Since: 2.2.7
sub_select :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (Value a) Source #
Deprecated: sub_select sub_select is an unsafe function to use. If used with a SqlQuery that returns 0 results, then it may return NULL despite not mentioning Maybe in the return type. If it returns more than 1 result, then it will throw a SQL error. Instead, consider using one of the following alternatives: - subSelect: attaches a LIMIT 1 and the Maybe return type, totally safe. - subSelectMaybe: Attaches a LIMIT 1, useful for a query that already has a Maybe in the return type. - subSelectCount: Performs a count of the query - this is always safe. - subSelectUnsafe: Performs no checks or guarantees. Safe to use with countRows and friends.
Execute a subquery SELECT in an SqlExpression. Returns a simple value so should be used only when the SELECT query is guaranteed to return just one row.
Deprecated in 3.2.0.
(^.) :: forall typ val. (PersistEntity val, PersistField typ) => SqlExpr (Entity val) -> EntityField val typ -> SqlExpr (Value typ) infixl 9 Source #
Project a field of an entity.
(?.) :: (PersistEntity val, PersistField typ) => SqlExpr (Maybe (Entity val)) -> EntityField val typ -> SqlExpr (Value (Maybe typ)) Source #
Project a field of an entity that may be null.
val :: PersistField typ => typ -> SqlExpr (Value typ) Source #
Lift a constant value from Haskell-land to the query.
isNothing :: PersistField typ => SqlExpr (Value (Maybe typ)) -> SqlExpr (Value Bool) Source #
IS NULL comparison.
For IS NOT NULL, you can negate this with not_, as in not_ (isNothing (person ^. PersonAge))
Warning: Persistent and Esqueleto have different behavior for != Nothing:
| Haskell | SQL | |
|---|---|---|
| Persistent | | IS NOT NULL |
| Esqueleto | | != NULL |
In SQL, = NULL and != NULL return NULL instead of true or false. For this reason, you very likely do not want to use in Esqueleto. You may find these !=. Nothinghlint rules helpful to enforce this:
- error: {lhs: v Database.Esqueleto.==. Database.Esqueleto.nothing, rhs: Database.Esqueleto.isNothing v, name: Use Esqueleto's isNothing} - error: {lhs: v Database.Esqueleto.==. Database.Esqueleto.val Nothing, rhs: Database.Esqueleto.isNothing v, name: Use Esqueleto's isNothing} - error: {lhs: v Database.Esqueleto.!=. Database.Esqueleto.nothing, rhs: not_ (Database.Esqueleto.isNothing v), name: Use Esqueleto's not isNothing} - error: {lhs: v Database.Esqueleto.!=. Database.Esqueleto.val Nothing, rhs: not_ (Database.Esqueleto.isNothing v), name: Use Esqueleto's not isNothing}withNonNull :: PersistField typ => SqlExpr (Value (Maybe typ)) -> (SqlExpr (Value typ) -> SqlQuery a) -> SqlQuery a Source #
Project an SqlExpression that may be null, guarding against null cases.
countDistinct :: Num a => SqlExpr (Value typ) -> SqlExpr (Value a) Source #
COUNT(DISTINCT x).
Since: 2.4.1
(==.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool) infix 4 Source #
(>=.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool) infix 4 Source #
(>.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool) infix 4 Source #
(<=.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool) infix 4 Source #
(<.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool) infix 4 Source #
(!=.) :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (Value typ) -> SqlExpr (Value Bool) infix 4 Source #
between :: PersistField a => SqlExpr (Value a) -> (SqlExpr (Value a), SqlExpr (Value a)) -> SqlExpr (Value Bool) Source #
BETWEEN.
@since: 3.1.0
(+.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a) infixl 6 Source #
(-.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a) infixl 6 Source #
(/.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a) infixl 7 Source #
(*.) :: PersistField a => SqlExpr (Value a) -> SqlExpr (Value a) -> SqlExpr (Value a) infixl 7 Source #
round_ :: (PersistField a, Num a, PersistField b, Num b) => SqlExpr (Value a) -> SqlExpr (Value b) Source #
ceiling_ :: (PersistField a, Num a, PersistField b, Num b) => SqlExpr (Value a) -> SqlExpr (Value b) Source #
floor_ :: (PersistField a, Num a, PersistField b, Num b) => SqlExpr (Value a) -> SqlExpr (Value b) Source #
sum_ :: (PersistField a, PersistField b) => SqlExpr (Value a) -> SqlExpr (Value (Maybe b)) Source #
avg_ :: (PersistField a, PersistField b) => SqlExpr (Value a) -> SqlExpr (Value (Maybe b)) Source #
castNum :: (Num a, Num b) => SqlExpr (Value a) -> SqlExpr (Value b) Source #
Allow a number of one type to be used as one of another type via an implicit cast. An explicit cast is not made, this function changes only the types on the Haskell side.
Caveat: Trying to use castNum from Double to Int will not result in an integer, the original fractional number will still be used! Use round_, ceiling_ or floor_ instead.
Safety: This operation is mostly safe due to the Num constraint between the types and the fact that RDBMSs usually allow numbers of different types to be used interchangeably. However, there may still be issues with the query not being accepted by the RDBMS or persistent not being able to parse it.
Since: 2.2.9
castNumM :: (Num a, Num b) => SqlExpr (Value (Maybe a)) -> SqlExpr (Value (Maybe b)) Source #
Same as castNum, but for nullable values.
Since: 2.2.9
coalesce :: PersistField a => [SqlExpr (Value (Maybe a))] -> SqlExpr (Value (Maybe a)) Source #
COALESCE function. Evaluates the arguments in order and returns the value of the first non-NULL SqlExpression, or NULL (Nothing) otherwise. Some RDBMSs (such as SQLite) require at least two arguments; please refer to the appropriate documentation.
Since: 1.4.3
coalesceDefault :: PersistField a => [SqlExpr (Value (Maybe a))] -> SqlExpr (Value a) -> SqlExpr (Value a) Source #
Like coalesce, but takes a non-nullable SqlExpression placed at the end of the SqlExpression list, which guarantees a non-NULL result.
Since: 1.4.3
upper_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) Source #
UPPER function. @since 3.3.0
ltrim_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) Source #
LTRIM function. @since 3.3.0
rtrim_ :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) Source #
RTRIM function. @since 3.3.0
length_ :: (SqlString s, Num a) => SqlExpr (Value s) -> SqlExpr (Value a) Source #
LENGTH function. @since 3.3.0
left_ :: (SqlString s, Num a) => (SqlExpr (Value s), SqlExpr (Value a)) -> SqlExpr (Value s) Source #
LEFT function. @since 3.3.0
right_ :: (SqlString s, Num a) => (SqlExpr (Value s), SqlExpr (Value a)) -> SqlExpr (Value s) Source #
RIGHT function. @since 3.3.0
like :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) -> SqlExpr (Value Bool) infixr 2 Source #
LIKE operator.
ilike :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) -> SqlExpr (Value Bool) infixr 2 Source #
ILIKE operator (case-insensitive LIKE).
Supported by PostgreSQL only.
Since: 2.2.3
concat_ :: SqlString s => [SqlExpr (Value s)] -> SqlExpr (Value s) Source #
The CONCAT function with a variable number of parameters. Supported by MySQL and PostgreSQL.
(++.) :: SqlString s => SqlExpr (Value s) -> SqlExpr (Value s) -> SqlExpr (Value s) infixr 5 Source #
castString :: (SqlString s, SqlString r) => SqlExpr (Value s) -> SqlExpr (Value r) Source #
Cast a string type into Text. This function is very useful if you want to use newtypes, or if you want to apply functions such as like to strings of different types.
Safety: This is a slightly unsafe function, especially if you have defined your own instances of SqlString. Also, since Maybe is an instance of SqlString, it's possible to turn a nullable value into a non-nullable one. Avoid using this function if possible.
subList_select :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (ValueList a) Source #
Execute a subquery SELECT in an SqlExpression. Returns a list of values.
valList :: PersistField typ => [typ] -> SqlExpr (ValueList typ) Source #
Lift a list of constant value from Haskell-land to the query.
in_ :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (ValueList typ) -> SqlExpr (Value Bool) Source #
IN operator. For example if you want to select all Persons by a list of IDs:
SELECT * FROM Person WHERE Person.id IN (?)
In esqueleto, we may write the same query above as:
select $from$ \person -> dowhere_$ person^.PersonId `in_`valListpersonIds return person
Where personIds is of type [Key Person].
notIn :: PersistField typ => SqlExpr (Value typ) -> SqlExpr (ValueList typ) -> SqlExpr (Value Bool) Source #
NOT IN operator.
set :: PersistEntity val => SqlExpr (Entity val) -> [SqlExpr (Entity val) -> SqlExpr Update] -> SqlQuery () Source #
SET clause used on UPDATEs. Note that while it's not a type error to use this function on a SELECT, it will most certainly result in a runtime error.
(=.) :: (PersistEntity val, PersistField typ) => EntityField val typ -> SqlExpr (Value typ) -> SqlExpr (Entity val) -> SqlExpr Update infixr 3 Source #
(+=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update infixr 3 Source #
(-=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update infixr 3 Source #
(*=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update infixr 3 Source #
(/=.) :: (PersistEntity val, PersistField a) => EntityField val a -> SqlExpr (Value a) -> SqlExpr (Entity val) -> SqlExpr Update infixr 3 Source #
case_ :: PersistField a => [(SqlExpr (Value Bool), SqlExpr (Value a))] -> SqlExpr (Value a) -> SqlExpr (Value a) Source #
CASE statement. For example:
select $ return $case_[when_(exists$from$ \p -> dowhere_(p^.PersonName==.val"Mike"))then_(sub_select$from$ \v -> do let sub =from$ \c -> dowhere_(c^.PersonName==.val"Mike") return (c^.PersonFavNum)where_(v^.PersonFavNum >.sub_selectsub) return $count(v^.PersonName) +.val(1 :: Int)) ] (else_$val(-1))
This query is a bit complicated, but basically it checks if a person named "Mike" exists, and if that person does, run the subquery to find out how many people have a ranking (by Fav Num) higher than "Mike".
NOTE: There are a few things to be aware about this statement.
- This only implements the full CASE statement, it does not implement the "simple" CASE statement.
- At least one
when_andthen_is mandatory otherwise it will emit an error. - The
else_is also mandatory, unlike the SQL statement in which if theELSEis omitted it will return aNULL. You can reproduce this vianothing.
Since: 2.1.2
toBaseId :: ToBaseId ent => SqlExpr (Value (Key ent)) -> SqlExpr (Value (Key (BaseEnt ent))) Source #
Convert an entity's key into another entity's.
This function is to be used when you change an entity's Id to be that of another entity. For example:
Bar barNum Int Foo bar BarId fooNum Int Primary bar
In this example, Bar is said to be the BaseEnt(ity), and Foo the child. To model this in Esqueleto, declare:
instance ToBaseId Foo where type BaseEnt Foo = Bar toBaseIdWitness barId = FooKey barId
Now you're able to write queries such as:
select$from$ (bar `InnerJoin` foo) -> doon(toBaseId(foo^.FooId)==.bar^.BarId) return (bar, foo)
Note: this function may be unsafe to use in conditions not like the one of the example above.
Since: 2.4.3
subSelect :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (Value (Maybe a)) Source #
Execute a subquery SELECT in a SqlExpr. The query passed to this function will only return a single result - it has a LIMIT 1 passed in to the query to make it safe, and the return type is Maybe to indicate that the subquery might result in 0 rows.
If you find yourself writing , then consider using joinV . subSelectsubSelectMaybe.
If you're performing a countRows, then you can use subSelectCount which is safe.
If you know that the subquery will always return exactly one row (eg a foreign key constraint guarantees that you'll get exactly one row), then consider subSelectUnsafe, along with a comment explaining why it is safe.
Since: 3.2.0
subSelectMaybe :: PersistField a => SqlQuery (SqlExpr (Value (Maybe a))) -> SqlExpr (Value (Maybe a)) Source #
Execute a subquery SELECT in a SqlExpr. This function is a shorthand for the common idiom, where you are calling joinV . subSelectsubSelect on an expression that would be Maybe already.
As an example, you would use this function when calling sum_ or max_, which have Maybe in the result type (for a 0 row query).
Since: 3.2.0
subSelectCount :: (Num a, PersistField a) => SqlQuery ignored -> SqlExpr (Value a) Source #
Performs a COUNT of the given query in a subSelect manner. This is always guaranteed to return a result value, and is completely safe.
Since: 3.2.0
Arguments
| :: (BackendCompatible SqlBackend (PersistEntityBackend val1), PersistEntity val1, PersistEntity val2, PersistField a) | |
| => SqlExpr (Entity val2) | An expression representing the table you have access to now. |
| -> EntityField val2 (Key val1) | The foreign key field on the table. |
| -> (SqlExpr (Entity val1) -> SqlExpr (Value a)) | A function to extract a value from the foreign reference table. |
| -> SqlExpr (Value a) |
Performs a sub-select using the given foreign key on the entity. This is useful to extract values that are known to be present by the database schema.
As an example, consider the following persistent definition:
User profile ProfileId Profile name Text
The following query will return the name of the user.
getUserWithName =select$from$ user ->pure(user,subSelectForeignuser UserProfile (^. ProfileName)
Since: 3.2.0
subSelectList :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (ValueList a) Source #
Execute a subquery SELECT in a SqlExpr that returns a list. This is an alias for subList_select and is provided for symmetry with the other safe subselect functions.
Since: 3.2.0
subSelectUnsafe :: PersistField a => SqlQuery (SqlExpr (Value a)) -> SqlExpr (Value a) Source #
Execute a subquery SELECT in a SqlExpr. This function is unsafe, because it can throw runtime exceptions in two cases:
- If the query passed has 0 result rows, then it will return a
NULLvalue. Thepersistentparsing operations will fail on an unexpectedNULL. - If the query passed returns more than one row, then the SQL engine will fail with an error like "More than one row returned by a subquery used as an expression".
This function is safe if you guarantee that exactly one row will be returned, or if the result already has a Maybe type for some reason.
For variants with the safety encoded already, see subSelect and subSelectMaybe. For the most common safe use of this, see subSelectCount.
Since: 3.2.0
when_ :: expr (Value Bool) -> () -> expr a -> (expr (Value Bool), expr a) Source #
Syntax sugar for case_.
Since: 2.1.2
A single value (as opposed to a whole entity). You may use ( or ^.)( to get a ?.)Value from an Entity.
Instances
| Applicative Value Source # | |
| Functor Value Source # | Since: 1.4.4 |
| Monad Value Source # | |
| (PersistEntity rec, PersistField typ, SymbolToField sym rec typ) => HasField (sym :: Symbol) (SqlExpr (Entity rec)) (SqlExpr (Value typ)) Source # | This instance allows you to use Example: -- persistent model: BlogPost authorId PersonId title Text -- query: This is exactly equivalent to the following: blogPost :: SqlExpr (Entity BlogPost) blogPost ^. BlogPostTitle blogPost ^. #title blogPost.title There's another instance defined on Since: 3.5.4.0 |
| (PersistEntity rec, PersistField typ, SymbolToField sym rec typ) => HasField (sym :: Symbol) (SqlExpr (Maybe (Entity rec))) (SqlExpr (Value (Maybe typ))) Source # | This instance allows you to use Example: -- persistent model: Person name Text BlogPost title Text authorId PersonId -- query: The following forms are all equivalent: blogPost :: SqlExpr (Maybe (Entity BlogPost)) blogPost ?. BlogPostTitle blogPost ?. #title blogPost.title Since: 3.5.4.0 |
| (ToFrom a a', SqlSelect b r, ToAlias b, ToAliasReference b, d ~ (a' :& b)) => DoInnerJoin Lateral a (a' -> SqlQuery b, d -> SqlExpr (Value Bool)) d Source # | |
| (ToFrom a a', ToMaybe b, d ~ (a' :& ToMaybeT b), SqlSelect b r, ToAlias b, ToAliasReference b) => DoLeftJoin Lateral a (a' -> SqlQuery b, d -> SqlExpr (Value Bool)) d Source # | |
| Show a => Show (Value a) Source # | |
| ToAlias (SqlExpr (Value a)) Source # | |
| ToAliasReference (SqlExpr (Value a)) Source # | |
| ToMaybe (SqlExpr (Value a)) Source # | |
| ToSomeValues (SqlExpr (Value a)) Source # | |
Defined in Database.Esqueleto.Internal.Internal | |
| Eq a => Eq (Value a) Source # | |
| Ord a => Ord (Value a) Source # | |
Defined in Database.Esqueleto.Internal.Internal | |
| PersistField a => SqlSelect (SqlExpr (Value a)) (Value a) Source # | You may return any single value (i.e. a single column) from a |
Defined in Database.Esqueleto.Internal.Internal Methods sqlSelectCols :: IdentInfo -> SqlExpr (Value a) -> (Builder, [PersistValue]) Source # sqlSelectColCount :: Proxy (SqlExpr (Value a)) -> Int Source # sqlSelectProcessRow :: [PersistValue] -> Either Text (Value a) Source # sqlInsertInto :: IdentInfo -> SqlExpr (Value a) -> (Builder, [PersistValue]) Source # | |
| type ToMaybeT (SqlExpr (Value a)) Source # | |
A list of single values. There's a limited set of functions able to work with this data type (such as subList_select, valList, in_ and exists).
Constructors
| ValueList a |
Instances
| Show a => Show (ValueList a) Source # | |
| Eq a => Eq (ValueList a) Source # | |
| Ord a => Ord (ValueList a) Source # | |
Defined in Database.Esqueleto.Internal.Internal | |
data DistinctOn Source #
Phantom type used by distinctOn and don.
data LockingKind Source #
Different kinds of locking clauses supported by locking.
Note that each RDBMS has different locking support. The constructors of this datatype specify only the syntax of the locking mechanism, not its semantics. For example, even though both MySQL and PostgreSQL support ForUpdate, there are no guarantees that they will behave the same.
Since: 2.2.7
Constructors
| ForUpdate |
Since: 2.2.7 |
| ForUpdateSkipLocked |
Since: 2.2.7 |
| ForShare |
Since: 2.2.7 |
| LockInShareMode |
Since: 2.2.7 |
class PersistField a => SqlString a Source #
Phantom class of data types that are treated as strings by the RDBMS. It has no methods because it's only used to avoid type errors such as trying to concatenate integers.
If you have a custom data type or newtype, feel free to make it an instance of this class.
Since: 2.4.0
Instances
| SqlString Html Source # | Since: 2.3.0 |
Defined in Database.Esqueleto.Internal.Internal | |
| SqlString ByteString Source # | Since: 2.3.0 |
Defined in Database.Esqueleto.Internal.Internal | |
| SqlString Text Source # | Since: 2.3.0 |
Defined in Database.Esqueleto.Internal.Internal | |
| SqlString Text Source # | Since: 2.3.0 |
Defined in Database.Esqueleto.Internal.Internal | |
| SqlString a => SqlString (Maybe a) Source # | Since: 2.4.0 |
Defined in Database.Esqueleto.Internal.Internal | |
| a ~ Char => SqlString [a] Source # | Since: 2.3.0 |
Defined in Database.Esqueleto.Internal.Internal | |
Joins
data InnerJoin a b infixl 2 Source #
Data type that represents an INNER JOIN (see LeftOuterJoin for an example).
Constructors
| a `InnerJoin` b infixl 2 |
Instances
| IsJoinKind InnerJoin Source # | |
Defined in Database.Esqueleto.Internal.Internal | |
| FromPreprocess (InnerJoin a b) => From (InnerJoin a b) Source # | |
| (DoInnerJoin lateral lhs rhs r, lateral ~ IsLateral rhs) => ToFrom (InnerJoin lhs rhs) r Source # | |
data CrossJoin a b infixl 2 Source #
Data type that represents a CROSS JOIN (see LeftOuterJoin for an example).
Constructors
| a `CrossJoin` b infixl 2 |
Instances
| IsJoinKind CrossJoin Source # | |
Defined in Database.Esqueleto.Internal.Internal | |
| FromPreprocess (CrossJoin a b) => From (CrossJoin a b) Source # | |
| (DoCrossJoin lateral lhs rhs r, IsLateral rhs ~ lateral) => ToFrom (CrossJoin lhs rhs) r Source # | |
data LeftOuterJoin a b infixl 2 Source #
Data type that represents a LEFT OUTER JOIN. For example,
select $from$ \(person `LeftOuterJoin` pet) -> ...
is translated into
SELECT ... FROM Person LEFT OUTER JOIN Pet ...
See also: from.
Constructors
| a `LeftOuterJoin` b infixl 2 |
Instances
| IsJoinKind LeftOuterJoin Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods smartJoin :: a -> b -> LeftOuterJoin a b Source # reifyJoinKind :: LeftOuterJoin a b -> JoinKind Source # | |
| FromPreprocess (LeftOuterJoin a b) => From (LeftOuterJoin a b) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods from_ :: SqlQuery (LeftOuterJoin a b) Source # | |
| (DoLeftJoin lateral lhs rhs r, lateral ~ IsLateral rhs) => ToFrom (LeftOuterJoin lhs rhs) r Source # | |
Defined in Database.Esqueleto.Experimental.From.Join Methods toFrom :: LeftOuterJoin lhs rhs -> From r Source # | |
data RightOuterJoin a b infixl 2 Source #
Data type that represents a RIGHT OUTER JOIN (see LeftOuterJoin for an example).
Constructors
| a `RightOuterJoin` b infixl 2 |
Instances
| IsJoinKind RightOuterJoin Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods smartJoin :: a -> b -> RightOuterJoin a b Source # reifyJoinKind :: RightOuterJoin a b -> JoinKind Source # | |
| FromPreprocess (RightOuterJoin a b) => From (RightOuterJoin a b) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods from_ :: SqlQuery (RightOuterJoin a b) Source # | |
| (ToFrom a a', ToFrom b b', ToMaybe a', ToMaybeT a' ~ ma, HasOnClause rhs (ma :& b'), ErrorOnLateral b, rhs ~ (b, (ma :& b') -> SqlExpr (Value Bool))) => ToFrom (RightOuterJoin a rhs) (ma :& b') Source # | |
Defined in Database.Esqueleto.Experimental.From.Join | |
data FullOuterJoin a b infixl 2 Source #
Data type that represents a FULL OUTER JOIN (see LeftOuterJoin for an example).
Constructors
| a `FullOuterJoin` b infixl 2 |
Instances
| IsJoinKind FullOuterJoin Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods smartJoin :: a -> b -> FullOuterJoin a b Source # reifyJoinKind :: FullOuterJoin a b -> JoinKind Source # | |
| FromPreprocess (FullOuterJoin a b) => From (FullOuterJoin a b) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods from_ :: SqlQuery (FullOuterJoin a b) Source # | |
| (ToFrom a a', ToFrom b b', ToMaybe a', ToMaybeT a' ~ ma, ToMaybe b', ToMaybeT b' ~ mb, HasOnClause rhs (ma :& mb), ErrorOnLateral b, rhs ~ (b, (ma :& mb) -> SqlExpr (Value Bool))) => ToFrom (FullOuterJoin a rhs) (ma :& mb) Source # | |
Defined in Database.Esqueleto.Experimental.From.Join | |
(Internal) A kind of JOIN.
Constructors
| InnerJoinKind | INNER JOIN |
| CrossJoinKind | CROSS JOIN |
| LeftOuterJoinKind | LEFT OUTER JOIN |
| RightOuterJoinKind | RIGHT OUTER JOIN |
| FullOuterJoinKind | FULL OUTER JOIN |
data OnClauseWithoutMatchingJoinException Source #
Exception thrown whenever on is used to create an ON clause but no matching JOIN is found.
Constructors
| OnClauseWithoutMatchingJoinException String |
Instances
SQL backend
SQL backend for esqueleto using SqlPersistT.
Instances
An expression on the SQL backend.
Raw expression: Contains a SqlExprMeta and a function for building the expr. It recieves a parameter telling it whether it is in a parenthesized context, and takes information about the SQL connection (mainly for escaping names) and returns both an string (Builder) and a list of values to be interpolated by the SQL backend.
Instances
type SqlEntity ent = (PersistEntity ent, PersistEntityBackend ent ~ SqlBackend) Source #
Constraint synonym for persistent entities whose backend is SqlBackend.
select :: (SqlSelect a r, MonadIO m, SqlBackendCanRead backend) => SqlQuery a -> ReaderT backend m [r] Source #
Execute an esqueleto SELECT query inside persistent's SqlPersistT monad and return a list of rows.
We've seen that from has some magic about which kinds of things you may bring into scope. This select function also has some magic for which kinds of things you may bring back to Haskell-land by using SqlQuery's return:
- You may return a
SqlExpr (for an entityEntityv)v(i.e., like the*in SQL), which is then returned to Haskell-land as justEntity v. - You may return a
SqlExpr (Maybe (Entity v))for an entityvthat may beNULL, which is then returned to Haskell-land asMaybe (Entity v). Used forOUTER JOINs. - You may return a
SqlExpr (for a valueValuet)t(i.e., a single column), wheretis any instance ofPersistField, which is then returned to Haskell-land asValue t. You may useValueto return projections of anEntity(see(and^.)() or to return any other value calculated on the query (e.g.,?.)countRowsorsubSelect).
The SqlSelect a r class has functional dependencies that allow type information to flow both from a to r and vice-versa. This means that you'll almost never have to give any type signatures for esqueleto queries. For example, the query alone is ambiguous, but in the context ofselect $ from $ \p -> return p
do ps <-select$from$ \p -> return p liftIO $ mapM_ (putStrLn . personName . entityVal) ps
we are able to infer from that single personName . entityVal function composition that the p inside the query is of type SqlExpr (Entity Person).
selectOne :: (SqlSelect a r, MonadIO m, SqlBackendCanRead backend) => SqlQuery a -> ReaderT backend m (Maybe r) Source #
Execute an esqueleto SELECT query inside persistent's SqlPersistT monad and return the first entry wrapped in a Maybe. @since 3.5.1.0
Example usage
firstPerson :: MonadIO m => SqlPersistT m (Maybe (Entity Person)) firstPerson =selectOne$ do person <-from$table@Person return person
The above query is equivalent to a select combined with limit but you would still have to transform the results from a list:
firstPerson :: MonadIO m => SqlPersistT m [Entity Person] firstPerson =select$ do person <-from$table@Personlimit1 return person
selectSource :: (SqlSelect a r, BackendCompatible SqlBackend backend, IsPersistBackend backend, PersistQueryRead backend, PersistStoreRead backend, PersistUniqueRead backend, MonadResource m) => SqlQuery a -> ConduitT () r (ReaderT backend m) () Source #
Execute an esqueleto SELECT query inside persistent's SqlPersistT monad and return a Source of rows.
delete :: (MonadIO m, SqlBackendCanWrite backend) => SqlQuery () -> ReaderT backend m () Source #
Execute an esqueleto DELETE query inside persistent's SqlPersistT monad. Note that currently there are no type checks for statements that should not appear on a DELETE query.
Example of usage:
delete$from$ \appointment ->where_(appointment^.AppointmentDate<.valnow)
Unlike select, there is a useful way of using delete that will lead to type ambiguities. If you want to delete all rows (i.e., no where_ clause), you'll have to use a type signature:
delete$from$ \(appointment ::SqlExpr(EntityAppointment)) -> return ()
Database.Esqueleto.Experimental:
delete $ do userFeature <- from $ table @UserFeature where_ ((userFeature ^. UserFeatureFeature) notIn valList allKnownFeatureFlags) deleteCount :: (MonadIO m, SqlBackendCanWrite backend) => SqlQuery () -> ReaderT backend m Int64 Source #
Same as delete, but returns the number of rows affected.
update :: (MonadIO m, PersistEntity val, BackendCompatible SqlBackend (PersistEntityBackend val), SqlBackendCanWrite backend) => (SqlExpr (Entity val) -> SqlQuery ()) -> ReaderT backend m () Source #
Execute an esqueleto UPDATE query inside persistent's SqlPersistT monad. Note that currently there are no type checks for statements that should not appear on a UPDATE query.
Example of usage:
update$ \p -> dosetp [ PersonAge=.just(valthisYear) -. p^.PersonBorn ]where_$ isNothing (p^.PersonAge)
updateCount :: (MonadIO m, PersistEntity val, BackendCompatible SqlBackend (PersistEntityBackend val), SqlBackendCanWrite backend) => (SqlExpr (Entity val) -> SqlQuery ()) -> ReaderT backend m Int64 Source #
Same as update, but returns the number of rows affected.
insertSelect :: (MonadIO m, PersistEntity a, SqlBackendCanWrite backend) => SqlQuery (SqlExpr (Insertion a)) -> ReaderT backend m () Source #
Insert a PersistField for every selected value.
Since: 2.4.2
insertSelectCount :: (MonadIO m, PersistEntity a, SqlBackendCanWrite backend) => SqlQuery (SqlExpr (Insertion a)) -> ReaderT backend m Int64 Source #
Insert a PersistField for every selected value, return the count afterward
(<#) :: (a -> b) -> SqlExpr (Value a) -> SqlExpr (Insertion b) Source #
Apply a PersistField constructor to SqlExpr Value arguments.
(<&>) :: SqlExpr (Insertion (a -> b)) -> SqlExpr (Value a) -> SqlExpr (Insertion b) Source #
Apply extra SqlExpr Value arguments to a PersistField constructor
Rendering Queries
Arguments
| :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) | |
| => Mode | |
| -> SqlQuery a | The SQL query you want to render. |
| -> ReaderT backend m (Text, [PersistValue]) |
Renders a SqlQuery into a Text value along with the list of PersistValues that would be supplied to the database for ? placeholders.
You must ensure that the Mode you pass to this function corresponds with the actual SqlQuery. If you pass a query that uses incompatible features (like an INSERT statement with a SELECT mode) then you'll get a weird result.
Since: 3.1.1
Arguments
| :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) | |
| => SqlQuery a | The SQL query you want to render. |
| -> ReaderT backend m (Text, [PersistValue]) |
Renders a SqlQuery into a Text value along with the list of PersistValues that would be supplied to the database for ? placeholders.
Since: 3.1.1
Arguments
| :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) | |
| => SqlQuery a | The SQL query you want to render. |
| -> ReaderT backend m (Text, [PersistValue]) |
Renders a SqlQuery into a Text value along with the list of PersistValues that would be supplied to the database for ? placeholders.
Since: 3.1.1
Arguments
| :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) | |
| => SqlQuery a | The SQL query you want to render. |
| -> ReaderT backend m (Text, [PersistValue]) |
Renders a SqlQuery into a Text value along with the list of PersistValues that would be supplied to the database for ? placeholders.
Since: 3.1.1
renderQueryInsertInto Source #
Arguments
| :: (SqlSelect a r, BackendCompatible SqlBackend backend, Monad m) | |
| => SqlQuery a | The SQL query you want to render. |
| -> ReaderT backend m (Text, [PersistValue]) |
Renders a SqlQuery into a Text value along with the list of PersistValues that would be supplied to the database for ? placeholders.
Since: 3.1.1
Helpers
valkey :: (ToBackendKey SqlBackend entity, PersistField (Key entity)) => Int64 -> SqlExpr (Value (Key entity)) Source #
valkey i = (https://github.com/prowdsponsor/esqueleto/issues/9).val . toSqlKey
valJ :: PersistField (Key entity) => Value (Key entity) -> SqlExpr (Value (Key entity)) Source #
valJ is like val but for something that is already a Value. The use case it was written for was, given a Value lift the Key for that Value into the query expression in a type safe way. However, the implementation is more generic than that so we call it valJ.
Its important to note that the input entity and the output entity are constrained to be the same by the type signature on the function (https://github.com/prowdsponsor/esqueleto/pull/69).
Since: 1.4.2
associateJoin :: forall e1 e0. Ord (Key e0) => [(Entity e0, e1)] -> Map (Key e0) (e0, [e1]) Source #
Avoid N+1 queries and join entities into a map structure.
This function is useful to call on the result of a single JOIN. For example, suppose you have this query:
getFoosAndNestedBarsFromParent :: ParentId -> SqlPersistT IO [(Entity Foo, Maybe (Entity Bar))] getFoosAndNestedBarsFromParent parentId =select$ do (foo :& bar) <- from $ tableFooBar`LeftOuterJoin`table`on`do \(foo :& bar) -> foo ^. FooId ==. bar ?. BarFooId where_ $ foo ^. FooParentId ==. val parentId pure (foo, bar)
This is a natural result type for SQL - a list of tuples. However, it's not what we usually want in Haskell - each Foo in the list will be represented multiple times, once for each Bar.
We can write and it will translate it into a fmap associateJoinMap that is keyed on the Key of the left Entity, and the value is a tuple of the entity's value as well as the list of each coresponding entity.
getFoosAndNestedBarsFromParentHaskellese :: ParentId -> SqlPersistT (Map (Key Foo) (Foo, [Maybe (Entity Bar)])) getFoosAndNestedBarsFromParentHaskellese parentId =fmapassociateJoin$ getFoosdAndNestedBarsFromParent parentId
What if you have multiple joins?
Let's use associateJoin with a *two* join query.
userPostComments :: SqlQuery (SqlExpr (Entity User, Entity Post, Entity Comment)) userPostsComment = do (u :& p :& c) <- from $ tableUserPost`InnerJoin`tableondo \(u :& p) -> u ^. UserId ==. p ^. PostUserId`InnerJoin`table @Comment`on`do \(_ :& p :& c) -> p ^. PostId ==. c ^. CommentPostId pure (u, p, c)
This query returns a User, with all of the users Posts, and then all of the Comments on that post.
First, we *nest* the tuple.
nest :: (a, b, c) -> (a, (b, c)) nest (a, b, c) = (a, (b, c))
This makes the return of the query conform to the input expected from associateJoin.
nestedUserPostComments :: SqlPersistT IO [(Entity User, (Entity Post, Entity Comment))] nestedUserPostComments = fmap nest $ select userPostsComments
Now, we can call associateJoin on it.
associateUsers :: [(Entity User, (Entity Post, Entity Comment))] -> Map UserId (User, [(Entity Post, Entity Comment)]) associateUsers = associateJoin
Next, we'll use the Functor instances for Map and tuple to call associateJoin on the [(Entity Post, Entity Comment)].
associatePostsAndComments :: Map UserId (User, [(Entity Post, Entity Comment)]) -> Map UserId (User, Map PostId (Post, [Entity Comment])) associatePostsAndComments = fmap (fmap associateJoin)
For more reading on this topic, see this Foxhound Systems blog post.
Since: 3.1.2
Re-exports
deleteKey :: (PersistStore backend, BaseBackend backend ~ PersistEntityBackend val, MonadIO m, PersistEntity val) => Key val -> ReaderT backend m () Source #
transactionUndoWithIsolation :: forall (m :: Type -> Type). MonadIO m => IsolationLevel -> ReaderT SqlBackend m () #
Roll back the current transaction and begin a new one with the specified isolation level.
Since: persistent-2.9.0
transactionUndo :: forall (m :: Type -> Type). MonadIO m => ReaderT SqlBackend m () #
Roll back the current transaction and begin a new one. This rolls back to the state of the last call to transactionSave or the enclosing runSqlConn call.
Since: persistent-1.2.0
transactionSaveWithIsolation :: forall (m :: Type -> Type). MonadIO m => IsolationLevel -> ReaderT SqlBackend m () #
Commit the current transaction and begin a new one with the specified isolation level.
Since: persistent-2.9.0
transactionSave :: forall (m :: Type -> Type). MonadIO m => ReaderT SqlBackend m () #
Commit the current transaction and begin a new one. This is used when a transaction commit is required within the context of runSqlConn (which brackets its provided action with a transaction begin/commit pair).
Since: persistent-1.2.0
runSqlCommand :: SqlPersistT IO () -> Migration #
Run an action against the database during a migration. Can be useful for eg creating Postgres extensions:
runSqlCommand $ rawExecute "CREATE EXTENSION IF NOT EXISTS "uuid-ossp";" [] Since: persistent-2.13.0.0
addMigrations :: CautiousMigration -> Migration #
Add a CautiousMigration (aka a [() to the migration plan.Bool, Text)]
Since: persistent-2.9.2
Arguments
| :: Bool | Is the migration unsafe to run? (eg a destructive or non-idempotent update on the schema). If |
| -> Sql | A |
| -> Migration |
Add a migration to the migration plan.
Since: persistent-2.9.2
reportErrors :: [Text] -> Migration #
Report multiple errors in a Migration.
Since: persistent-2.9.2
reportError :: Text -> Migration #
Report a single error in a Migration.
Since: persistent-2.9.2
runMigrationUnsafeQuiet :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m [Text] #
Same as runMigrationUnsafe, but returns a list of the SQL commands executed instead of printing them to stderr.
Since: persistent-2.10.2
runMigrationUnsafe :: forall (m :: Type -> Type). MonadIO m => Migration -> ReaderT SqlBackend m () #
Like runMigration, but this will perform the unsafe database migrations instead of erroring out.
runMigrationSilent :: forall (m :: Type -> Type). MonadUnliftIO m => Migration -> ReaderT SqlBackend m [Text] #
Same as runMigration, but returns a list of the SQL commands executed instead of printing them to stderr.
This function silences the migration by remapping stderr. As a result, it is not thread-safe and can clobber output from other parts of the program. This implementation method was chosen to also silence postgresql migration output on stderr, but is not recommended!
runMigrationQuiet :: forall (m :: Type -> Type). MonadIO m => Migration -> ReaderT SqlBackend m [Text] #
Same as runMigration, but does not report the individual migrations on stderr. Instead it returns a list of the executed SQL commands.
This is a safer/more robust alternative to runMigrationSilent, but may be less silent for some persistent implementations, most notably persistent-postgresql
Since: persistent-2.10.2
runMigration :: forall (m :: Type -> Type). MonadIO m => Migration -> ReaderT SqlBackend m () #
Runs a migration. If the migration fails to parse or if any of the migrations are unsafe, then this throws a PersistUnsafeMigrationException.
getMigration :: forall (m :: Type -> Type). (MonadIO m, HasCallStack) => Migration -> ReaderT SqlBackend m [Sql] #
showMigration :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m [Text] #
printMigration :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m () #
Prints a migration.
parseMigration' :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m CautiousMigration #
Like parseMigration, but instead of returning the value in an Either value, it calls error on the error values.
parseMigration :: forall (m :: Type -> Type). (HasCallStack, MonadIO m) => Migration -> ReaderT SqlBackend m (Either [Text] CautiousMigration) #
Given a Migration, this parses it and returns either a list of errors associated with the migration or a list of migrations to do.
type CautiousMigration = [(Bool, Sql)] #
type Migration = WriterT [Text] (WriterT CautiousMigration (ReaderT SqlBackend IO)) () #
A Migration is a four level monad stack consisting of:
representing a log of errors in the migrations.WriterT[Text]representing a list of migrations to run, along with whether or not they are safe.WriterTCautiousMigration, aka theReaderTSqlBackendSqlPersistTtransformer for database interop.for arbitrary IO.IO
newtype PersistUnsafeMigrationException #
An exception indicating that Persistent refused to run some unsafe migrations. Contains a list of pairs where the Bool tracks whether the migration was unsafe (True means unsafe), and the Sql is the sql statement for the migration.
Since: persistent-2.11.1.0
Constructors
| PersistUnsafeMigrationException [(Bool, Sql)] |
Instances
| Exception PersistUnsafeMigrationException | |
| Show PersistUnsafeMigrationException | This |
Defined in Database.Persist.Sql.Migration Methods showsPrec :: Int -> PersistUnsafeMigrationException -> ShowS # | |
decorateSQLWithLimitOffset :: Text -> (Int, Int) -> Text -> Text #
Generates sql for limit and offset for postgres, sqlite and mysql.
Arguments
| :: PersistEntity val | |
| => Maybe FilterTablePrefix | include table name or EXCLUDED |
| -> SqlBackend | |
| -> [SelectOpt val] | |
| -> Text |
Arguments
| :: PersistEntity val | |
| => Maybe FilterTablePrefix | include table name or EXCLUDED |
| -> SqlBackend | |
| -> [Filter val] | |
| -> (Text, [PersistValue]) |
Render a [ into a Filter record]Text value suitable for inclusion into a SQL query, as well as the [ to properly fill in the PersistValue]? place holders.
Since: persistent-2.12.1.0
Arguments
| :: PersistEntity val | |
| => Maybe FilterTablePrefix | include table name or EXCLUDED |
| -> SqlBackend | |
| -> [Filter val] | |
| -> Text |
data FilterTablePrefix #
Used when determining how to prefix a column name in a WHERE clause.
Since: persistent-2.12.1.0
Constructors
| PrefixTableName | Prefix the column with the table name. This is useful if the column name might be ambiguous. Since: persistent-2.12.1.0 |
| PrefixExcluded | Prefix the column name with the Since: persistent-2.12.1.0 |
fieldDBName :: PersistEntity record => EntityField record typ -> FieldNameDB #
useful for a backend to implement fieldName by adding escaping
getFieldName :: forall record typ (m :: Type -> Type) backend. (PersistEntity record, PersistEntityBackend record ~ SqlBackend, BackendCompatible SqlBackend backend, Monad m) => EntityField record typ -> ReaderT backend m Text #
get the SQL string for the field that an EntityField represents Useful for raw SQL queries
Your backend may provide a more convenient fieldName function which does not operate in a Monad
tableDBName :: PersistEntity record => record -> EntityNameDB #
useful for a backend to implement tableName by adding escaping
getTableName :: forall record (m :: Type -> Type) backend. (PersistEntity record, BackendCompatible SqlBackend backend, Monad m) => record -> ReaderT backend m Text #
get the SQL string for the table that a PeristEntity represents Useful for raw SQL queries
Your backend may provide a more convenient tableName function which does not operate in a Monad
fromSqlKey :: ToBackendKey SqlBackend record => Key record -> Int64 #
toSqlKey :: ToBackendKey SqlBackend record => Int64 -> Key record #
withRawQuery :: forall (m :: Type -> Type) a. MonadIO m => Text -> [PersistValue] -> ConduitM [PersistValue] Void IO a -> ReaderT SqlBackend m a #
close' :: BackendCompatible SqlBackend backend => backend -> IO () #
withSqlConn :: forall backend m a. (MonadUnliftIO m, MonadLoggerIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> (backend -> m a) -> m a #
Create a connection and run sql queries within it. This function automatically closes the connection on it's completion.
Example usage
{-# LANGUAGE GADTs #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeFamilies#-} {-# LANGUAGE TemplateHaskell#-} {-# LANGUAGE QuasiQuotes#-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} import Control.Monad.IO.Class (liftIO) import Control.Monad.Logger import Conduit import Database.Persist import Database.Sqlite import Database.Persist.Sqlite import Database.Persist.TH share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase| Person name String age Int Maybe deriving Show |] openConnection :: LogFunc -> IO SqlBackend openConnection logfn = do conn <- open "/home/sibi/test.db" wrapConnection conn logfn main :: IO () main = do runNoLoggingT $ runResourceT $ withSqlConn openConnection (\backend -> flip runSqlConn backend $ do runMigration migrateAll insert_ $ Person "John doe" $ Just 35 insert_ $ Person "Divya" $ Just 36 (pers :: [Entity Person]) <- selectList [] [] liftIO $ print pers return () )On executing it, you get this output:
Migrating: CREATE TABLE "person"("id" INTEGER PRIMARY KEY,"name" VARCHAR NOT NULL,"age" INTEGER NULL) [Entity {entityKey = PersonKey {unPersonKey = SqlBackendKey {unSqlBackendKey = 1}}, entityVal = Person {personName = "John doe", personAge = Just 35}},Entity {entityKey = PersonKey {unPersonKey = SqlBackendKey {unSqlBackendKey = 2}}, entityVal = Person {personName = "Hema", personAge = Just 36}}]Arguments
| :: (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) | |
| => (LogFunc -> IO backend) | Function to create a new connection |
| -> ConnectionPoolConfig | |
| -> m (Pool backend) |
Creates a pool of connections to a SQL database.
Since: persistent-2.11.0.0
createSqlPool :: forall backend m. (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) => (LogFunc -> IO backend) -> Int -> m (Pool backend) #
Arguments
| :: forall backend m a. (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) | |
| => (LogFunc -> IO backend) | Function to create a new connection |
| -> ConnectionPoolConfig | |
| -> (Pool backend -> m a) | |
| -> m a |
Creates a pool of connections to a SQL database which can be used by the Pool backend -> m a function. After the function completes, the connections are destroyed.
Since: persistent-2.11.0.0
Arguments
| :: forall backend m a. (MonadLoggerIO m, MonadUnliftIO m, BackendCompatible SqlBackend backend) | |
| => (LogFunc -> IO backend) | create a new connection |
| -> Int | connection count |
| -> (Pool backend -> m a) | |
| -> m a |
liftSqlPersistMPool :: forall backend m a. (MonadIO m, BackendCompatible SqlBackend backend) => ReaderT backend (NoLoggingT (ResourceT IO)) a -> Pool backend -> m a #
runSqlPersistMPool :: BackendCompatible SqlBackend backend => ReaderT backend (NoLoggingT (ResourceT IO)) a -> Pool backend -> IO a #
runSqlPersistM :: BackendCompatible SqlBackend backend => ReaderT backend (NoLoggingT (ResourceT IO)) a -> backend -> IO a #
runSqlConnWithIsolation :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> backend -> IsolationLevel -> m a #
Like runSqlConn, but supports specifying an isolation level.
Since: persistent-2.9.0
runSqlConn :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> backend -> m a #
acquireSqlConnWithIsolation :: (MonadReader backend m, BackendCompatible SqlBackend backend) => IsolationLevel -> m (Acquire backend) #
Like acquireSqlConn, but lets you specify an explicit isolation level.
Since: persistent-2.10.5
acquireSqlConn :: (MonadReader backend m, BackendCompatible SqlBackend backend) => m (Acquire backend) #
Starts a new transaction on the connection. When the acquired connection is released the transaction is committed and the connection returned to the pool.
Upon an exception the transaction is rolled back and the connection destroyed.
This is equivalent to runSqlConn but does not incur the MonadUnliftIO constraint, meaning it can be used within, for example, a Conduit pipeline.
Since: persistent-2.10.5
runSqlPoolWithExtensibleHooks :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> Maybe IsolationLevel -> SqlPoolHooks m backend -> m a #
This function is how runSqlPoolWithHooks is defined.
It's currently the most general function for using a SQL pool.
Since: persistent-2.13.0.0
Arguments
| :: forall backend m a before after onException. (MonadUnliftIO m, BackendCompatible SqlBackend backend) | |
| => ReaderT backend m a | |
| -> Pool backend | |
| -> Maybe IsolationLevel | |
| -> (backend -> m before) | Run this action immediately before the action is performed. |
| -> (backend -> m after) | Run this action immediately after the action is completed. |
| -> (backend -> SomeException -> m onException) | This action is performed when an exception is received. The exception is provided as a convenience - it is rethrown once this cleanup function is complete. |
| -> m a |
This function is how runSqlPool and runSqlPoolNoTransaction are defined. In addition to the action to be performed and the Pool of conections to use, we give you the opportunity to provide three actions - initialize, afterwards, and onException.
Since: persistent-2.12.0.0
runSqlPoolNoTransaction :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> Maybe IsolationLevel -> m a #
Like runSqlPool, but does not surround the action in a transaction. This action might leave your database in a weird state.
Since: persistent-2.12.0.0
runSqlPoolWithIsolation :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> IsolationLevel -> m a #
Like runSqlPool, but supports specifying an isolation level.
Since: persistent-2.9.0
runSqlPool :: forall backend m a. (MonadUnliftIO m, BackendCompatible SqlBackend backend) => ReaderT backend m a -> Pool backend -> m a #
Get a connection from the pool, run the given action, and then return the connection to the pool.
This function performs the given action in a transaction. If an exception occurs during the action, then the transaction is rolled back.
Note: This function previously timed out after 2 seconds, but this behavior was buggy and caused more problems than it solved. Since version 2.1.2, it performs no timeout checks.
Arguments
| :: forall a (m :: Type -> Type) backend. (RawSql a, MonadIO m, BackendCompatible SqlBackend backend) | |
| => Text | SQL statement, possibly with placeholders. |
| -> [PersistValue] | Values to fill the placeholders. |
| -> ReaderT backend m [a] |
Execute a raw SQL statement and return its results as a list. If you do not expect a return value, use of rawExecute is recommended.
If you're using Entitys (which is quite likely), then you must use entity selection placeholders (double question mark, ??). These ?? placeholders are then replaced for the names of the columns that we need for your entities. You'll receive an error if you don't use the placeholders. Please see the Entitys documentation for more details.
You may put value placeholders (question marks, ?) in your SQL query. These placeholders are then replaced by the values you pass on the second parameter, already correctly escaped. You may want to use toPersistValue to help you constructing the placeholder values.
Since you're giving a raw SQL statement, you don't get any guarantees regarding safety. If rawSql is not able to parse the results of your query back, then an exception is raised. However, most common problems are mitigated by using the entity selection placeholder ??, and you shouldn't see any error at all if you're not using Single.
Some example of rawSql based on this schema:
share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase| Person name String age Int Maybe deriving Show BlogPost title String authorId PersonId deriving Show |]
Examples based on the above schema:
getPerson :: MonadIO m => ReaderT SqlBackend m [Entity Person] getPerson = rawSql "select ?? from person where name=?" [PersistText "john"] getAge :: MonadIO m => ReaderT SqlBackend m [Single Int] getAge = rawSql "select person.age from person where name=?" [PersistText "john"] getAgeName :: MonadIO m => ReaderT SqlBackend m [(Single Int, Single Text)] getAgeName = rawSql "select person.age, person.name from person where name=?" [PersistText "john"] getPersonBlog :: MonadIO m => ReaderT SqlBackend m [(Entity Person, Entity BlogPost)] getPersonBlog = rawSql "select ??,?? from person,blog_post where person.id = blog_post.author_id" []
Minimal working program for PostgreSQL backend based on the above concepts:
{-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} import Control.Monad.IO.Class (liftIO) import Control.Monad.Logger (runStderrLoggingT) import Database.Persist import Control.Monad.Reader import Data.Text import Database.Persist.Sql import Database.Persist.Postgresql import Database.Persist.TH share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase| Person name String age Int Maybe deriving Show |] conn = "host=localhost dbname=new_db user=postgres password=postgres port=5432" getPerson :: MonadIO m => ReaderT SqlBackend m [Entity Person] getPerson = rawSql "select ?? from person where name=?" [PersistText "sibi"] liftSqlPersistMPool y x = liftIO (runSqlPersistMPool y x) main :: IO () main = runStderrLoggingT $ withPostgresqlPool conn 10 $ liftSqlPersistMPool $ do runMigration migrateAll xs <- getPerson liftIO (print xs) getStmtConn :: SqlBackend -> Text -> IO Statement #
Arguments
| :: forall (m :: Type -> Type) backend. (MonadIO m, BackendCompatible SqlBackend backend) | |
| => Text | SQL statement, possibly with placeholders. |
| -> [PersistValue] | Values to fill the placeholders. |
| -> ReaderT backend m Int64 |
Execute a raw SQL statement and return the number of rows it has modified.
Arguments
| :: forall (m :: Type -> Type) backend. (MonadIO m, BackendCompatible SqlBackend backend) | |
| => Text | SQL statement, possibly with placeholders. |
| -> [PersistValue] | Values to fill the placeholders. |
| -> ReaderT backend m () |
Execute a raw SQL statement
rawQueryRes :: forall (m1 :: Type -> Type) (m2 :: Type -> Type) env. (MonadIO m1, MonadIO m2, BackendCompatible SqlBackend env) => Text -> [PersistValue] -> ReaderT env m1 (Acquire (ConduitM () [PersistValue] m2 ())) #
rawQuery :: forall (m :: Type -> Type) env. (MonadResource m, MonadReader env m, BackendCompatible SqlBackend env) => Text -> [PersistValue] -> ConduitM () [PersistValue] m () #
unPrefix :: forall (prefix :: Symbol) record. EntityWithPrefix prefix record -> Entity record #
A helper function to tell GHC what the EntityWithPrefix prefix should be. This allows you to use a type application to specify the prefix, instead of specifying the etype on the result.
As an example, here's code that uses this:
myQuery ::SqlPersistM[EntityPerson] myQuery = fmap (unPrefix @"p") $ rawSql query [] where query = "SELECT ?? FROM person AS p"
Since: persistent-2.10.5
Class for data types that may be retrived from a rawSql query.
Methods
rawSqlCols :: (Text -> Text) -> a -> (Int, [Text]) #
Number of columns that this data type needs and the list of substitutions for SELECT placeholders ??.
rawSqlColCountReason :: a -> String #
A string telling the user why the column count is what it is.
rawSqlProcessRow :: [PersistValue] -> Either Text a #
Transform a row of the result into the data type.
Instances
| (PersistEntity record, PersistEntityBackend record ~ backend, IsPersistBackend backend) => RawSql (Entity record) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Entity record -> (Int, [Text]) # rawSqlColCountReason :: Entity record -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Entity record) # | |
| (PersistEntity a, PersistEntityBackend a ~ backend, IsPersistBackend backend) => RawSql (Key a) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Key a -> (Int, [Text]) # rawSqlColCountReason :: Key a -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Key a) # | |
| PersistField a => RawSql (Single a) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Single a -> (Int, [Text]) # rawSqlColCountReason :: Single a -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Single a) # | |
| RawSql a => RawSql (Maybe a) | Since: persistent-1.0.1 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Maybe a -> (Int, [Text]) # rawSqlColCountReason :: Maybe a -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Maybe a) # | |
| (PersistEntity record, KnownSymbol prefix, PersistEntityBackend record ~ backend, IsPersistBackend backend) => RawSql (EntityWithPrefix prefix record) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> EntityWithPrefix prefix record -> (Int, [Text]) # rawSqlColCountReason :: EntityWithPrefix prefix record -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (EntityWithPrefix prefix record) # | |
| (RawSql a, RawSql b) => RawSql (a, b) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b) -> (Int, [Text]) # rawSqlColCountReason :: (a, b) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b) # | |
| (RawSql a, RawSql b, RawSql c) => RawSql (a, b, c) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d) => RawSql (a, b, c, d) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e) => RawSql (a, b, c, d, e) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f) => RawSql (a, b, c, d, e, f) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g) => RawSql (a, b, c, d, e, f, g) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h) => RawSql (a, b, c, d, e, f, g, h) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i) => RawSql (a, b, c, d, e, f, g, h, i) | Since: persistent-2.10.2 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j) => RawSql (a, b, c, d, e, f, g, h, i, j) | Since: persistent-2.10.2 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k) => RawSql (a, b, c, d, e, f, g, h, i, j, k) | Since: persistent-2.10.2 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l) | Since: persistent-2.10.2 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3, RawSql e3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3, RawSql e3, RawSql f3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3, RawSql e3, RawSql f3, RawSql g3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3, RawSql e3, RawSql f3, RawSql g3, RawSql h3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3, RawSql e3, RawSql f3, RawSql g3, RawSql h3, RawSql i3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3) # | |
| (RawSql a, RawSql b, RawSql c, RawSql d, RawSql e, RawSql f, RawSql g, RawSql h, RawSql i, RawSql j, RawSql k, RawSql l, RawSql m, RawSql n, RawSql o, RawSql p, RawSql q, RawSql r, RawSql s, RawSql t, RawSql u, RawSql v, RawSql w, RawSql x, RawSql y, RawSql z, RawSql a2, RawSql b2, RawSql c2, RawSql d2, RawSql e2, RawSql f2, RawSql g2, RawSql h2, RawSql i2, RawSql j2, RawSql k2, RawSql l2, RawSql m2, RawSql n2, RawSql o2, RawSql p2, RawSql q2, RawSql r2, RawSql s2, RawSql t2, RawSql u2, RawSql v2, RawSql w2, RawSql x2, RawSql y2, RawSql z2, RawSql a3, RawSql b3, RawSql c3, RawSql d3, RawSql e3, RawSql f3, RawSql g3, RawSql h3, RawSql i3, RawSql j3) => RawSql (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3, j3) | Since: persistent-2.11.0 |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3, j3) -> (Int, [Text]) # rawSqlColCountReason :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3, j3) -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2, q2, r2, s2, t2, u2, v2, w2, x2, y2, z2, a3, b3, c3, d3, e3, f3, g3, h3, i3, j3) # | |
newtype EntityWithPrefix (prefix :: Symbol) record #
This newtype wrapper is useful when selecting an entity out of the database and you want to provide a prefix to the table being selected.
Consider this raw SQL query:
SELECT ?? FROM my_long_table_name AS mltn INNER JOIN other_table AS ot ON mltn.some_col = ot.other_col WHERE ...
We don't want to refer to my_long_table_name every time, so we create an alias. If we want to select it, we have to tell the raw SQL quasi-quoter that we expect the entity to be prefixed with some other name.
We can give the above query a type with this, like:
getStuff ::SqlPersistM[EntityWithPrefix"mltn" MyLongTableName] getStuff = rawSql queryText []
The EntityWithPrefix bit is a boilerplate newtype wrapper, so you can remove it with unPrefix, like this:
getStuff ::SqlPersistM[EntityMyLongTableName] getStuff =unPrefix@"mltn"<$>rawSqlqueryText []
The symbol is a "type application" and requires the TypeApplications@ language extension.
Since: persistent-2.10.5
Constructors
| EntityWithPrefix | |
Fields
| |
Instances
| (PersistEntity record, KnownSymbol prefix, PersistEntityBackend record ~ backend, IsPersistBackend backend) => RawSql (EntityWithPrefix prefix record) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> EntityWithPrefix prefix record -> (Int, [Text]) # rawSqlColCountReason :: EntityWithPrefix prefix record -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (EntityWithPrefix prefix record) # | |
class PersistField a => PersistFieldSql a where #
Tells Persistent what database column type should be used to store a Haskell type.
Examples
Simple Boolean Alternative
data Switch = On | Off deriving (Show, Eq) instancePersistFieldSwitch wheretoPersistValues = case s of On ->PersistBoolTrue Off ->PersistBoolFalsefromPersistValue(PersistBoolb) = if b thenRightOn elseRightOfffromPersistValuex = Left $ "File.hs: When trying to deserialize a Switch: expected PersistBool, received: " <> T.pack (show x) instancePersistFieldSqlSwitch wheresqlType_ =SqlBool
Non-Standard Database Types
If your database supports non-standard types, such as Postgres' uuid, you can use SqlOther to use them:
import qualified Data.UUID as UUID instancePersistFieldUUID wheretoPersistValue=PersistLiteralEncoded. toASCIIBytesfromPersistValue(PersistLiteralEncodeduuid) = case fromASCIIBytes uuid ofNothing->Left$ "Model/CustomTypes.hs: Failed to deserialize a UUID; received: " <> T.pack (show uuid)Justuuid' ->Rightuuid'fromPersistValuex = Left $ "File.hs: When trying to deserialize a UUID: expected PersistLiteralEncoded, received: "-- > <> T.pack (show x) instancePersistFieldSqlUUID wheresqlType_ =SqlOther"uuid"
User Created Database Types
Similarly, some databases support creating custom types, e.g. Postgres' DOMAIN and ENUM features. You can use SqlOther to specify a custom type:
CREATE DOMAIN ssn AS text CHECK ( value ~ '^[0-9]{9}$');instancePersistFieldSQLSSN wheresqlType_ =SqlOther"ssn"
CREATE TYPE rainbow_color AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet');instancePersistFieldSQLRainbowColor wheresqlType_ =SqlOther"rainbow_color"
Instances
toJsonText :: ToJSON j => j -> Text #
mkColumns :: [EntityDef] -> EntityDef -> BackendSpecificOverrides -> ([Column], [UniqueDef], [ForeignDef]) #
Create the list of columns for the given entity.
defaultAttribute :: [FieldAttr] -> Maybe Text #
emptyBackendSpecificOverrides :: BackendSpecificOverrides #
Creates an empty BackendSpecificOverrides (i.e. use the default behavior; no overrides)
Since: persistent-2.11
setBackendSpecificForeignKeyName :: (EntityNameDB -> FieldNameDB -> ConstraintNameDB) -> BackendSpecificOverrides -> BackendSpecificOverrides #
Set the backend's foreign key generation function to this value.
Since: persistent-2.13.0.0
getBackendSpecificForeignKeyName :: BackendSpecificOverrides -> Maybe (EntityNameDB -> FieldNameDB -> ConstraintNameDB) #
If the override is defined, then this returns a function that accepts an entity name and field name and provides the ConstraintNameDB for the foreign key constraint.
An abstract accessor for the BackendSpecificOverrides
Since: persistent-2.13.0.0
data BackendSpecificOverrides #
Record of functions to override the default behavior in mkColumns. It is recommended you initialize this with emptyBackendSpecificOverrides and override the default values, so that as new fields are added, your code still compiles.
For added safety, use the getBackendSpecific* and setBackendSpecific* functions, as a breaking change to the record field labels won't be reflected in a major version bump of the library.
Since: persistent-2.11
defaultConnectionPoolConfig :: ConnectionPoolConfig #
Initializes a ConnectionPoolConfig with default values. See the documentation of ConnectionPoolConfig for each field's default value.
Since: persistent-2.11.0.0
Constructors
| Column | |
Fields
| |
data ColumnReference #
This value specifies how a field references another table.
Since: persistent-2.11.0.0
Constructors
| ColumnReference | |
Fields
| |
Instances
| Show ColumnReference | |
Defined in Database.Persist.Sql.Types Methods showsPrec :: Int -> ColumnReference -> ShowS # show :: ColumnReference -> String # showList :: [ColumnReference] -> ShowS # | |
| Eq ColumnReference | |
Defined in Database.Persist.Sql.Types Methods (==) :: ColumnReference -> ColumnReference -> Bool # (/=) :: ColumnReference -> ColumnReference -> Bool # | |
| Ord ColumnReference | |
Defined in Database.Persist.Sql.Types Methods compare :: ColumnReference -> ColumnReference -> Ordering # (<) :: ColumnReference -> ColumnReference -> Bool # (<=) :: ColumnReference -> ColumnReference -> Bool # (>) :: ColumnReference -> ColumnReference -> Bool # (>=) :: ColumnReference -> ColumnReference -> Bool # max :: ColumnReference -> ColumnReference -> ColumnReference # min :: ColumnReference -> ColumnReference -> ColumnReference # | |
data PersistentSqlException #
Constructors
| StatementAlreadyFinalized Text | |
| Couldn'tGetSQLConnection |
Instances
| Exception PersistentSqlException | |
Defined in Database.Persist.Sql.Types | |
| Show PersistentSqlException | |
Defined in Database.Persist.Sql.Types Methods showsPrec :: Int -> PersistentSqlException -> ShowS # show :: PersistentSqlException -> String # showList :: [PersistentSqlException] -> ShowS # | |
type SqlPersistT = ReaderT SqlBackend #
type SqlPersistM = SqlPersistT (NoLoggingT (ResourceT IO)) #
type ConnectionPool = Pool SqlBackend #
data ConnectionPoolConfig #
Values to configure a pool of database connections. See Data.Pool for details.
Since: persistent-2.11.0.0
Constructors
| ConnectionPoolConfig | |
Fields
| |
Instances
| Show ConnectionPoolConfig | |
Defined in Database.Persist.Sql.Types Methods showsPrec :: Int -> ConnectionPoolConfig -> ShowS # show :: ConnectionPoolConfig -> String # showList :: [ConnectionPoolConfig] -> ShowS # | |
A single column (see rawSql). Any PersistField may be used here, including PersistValue (which does not do any processing).
Instances
| Read a => Read (Single a) | |
| Show a => Show (Single a) | |
| Eq a => Eq (Single a) | |
| Ord a => Ord (Single a) | |
Defined in Database.Persist.Sql.Types | |
| PersistField a => RawSql (Single a) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Single a -> (Int, [Text]) # rawSqlColCountReason :: Single a -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Single a) # | |
readToUnknown :: forall (m :: Type -> Type) a. Monad m => ReaderT SqlReadBackend m a -> ReaderT SqlBackend m a #
Useful for running a read query against a backend with unknown capabilities.
readToWrite :: forall (m :: Type -> Type) a. Monad m => ReaderT SqlReadBackend m a -> ReaderT SqlWriteBackend m a #
Useful for running a read query against a backend with read and write capabilities.
writeToUnknown :: forall (m :: Type -> Type) a. Monad m => ReaderT SqlWriteBackend m a -> ReaderT SqlBackend m a #
Useful for running a write query against an untagged backend with unknown capabilities.
newtype SqlReadBackend #
An SQL backend which can only handle read queries
The constructor was exposed in 2.10.0.
Constructors
| SqlReadBackend | |
Fields | |
Instances
| HasPersistBackend SqlReadBackend | |
Defined in Database.Persist.Sql.Types.Internal Associated Types type BaseBackend SqlReadBackend # Methods persistBackend :: SqlReadBackend -> BaseBackend SqlReadBackend # | |
| IsPersistBackend SqlReadBackend | |
Defined in Database.Persist.Sql.Types.Internal Methods mkPersistBackend :: BaseBackend SqlReadBackend -> SqlReadBackend # | |
| newtype BackendKey SqlReadBackend | |
Defined in Database.Persist.Sql.Orphan.PersistStore | |
| type BaseBackend SqlReadBackend | |
Defined in Database.Persist.Sql.Types.Internal | |
| type Rep (BackendKey SqlReadBackend) | |
Defined in Database.Persist.Sql.Orphan.PersistStore type Rep (BackendKey SqlReadBackend) = D1 ('MetaData "BackendKey" "Database.Persist.Sql.Orphan.PersistStore" "persistent-2.14.2.0-1uV2T4Dmqw9CguKeHVwHjk" 'True) (C1 ('MetaCons "SqlReadBackendKey" 'PrefixI 'True) (S1 ('MetaSel ('Just "unSqlReadBackendKey") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int64))) | |
newtype SqlWriteBackend #
An SQL backend which can handle read or write queries
The constructor was exposed in 2.10.0
Constructors
| SqlWriteBackend | |
Fields | |
Instances
| HasPersistBackend SqlWriteBackend | |
Defined in Database.Persist.Sql.Types.Internal Associated Types type BaseBackend SqlWriteBackend # Methods persistBackend :: SqlWriteBackend -> BaseBackend SqlWriteBackend # | |
| IsPersistBackend SqlWriteBackend | |
Defined in Database.Persist.Sql.Types.Internal Methods mkPersistBackend :: BaseBackend SqlWriteBackend -> SqlWriteBackend # | |
| newtype BackendKey SqlWriteBackend | |
Defined in Database.Persist.Sql.Orphan.PersistStore | |
| type BaseBackend SqlWriteBackend | |
Defined in Database.Persist.Sql.Types.Internal | |
| type Rep (BackendKey SqlWriteBackend) | |
Defined in Database.Persist.Sql.Orphan.PersistStore type Rep (BackendKey SqlWriteBackend) = D1 ('MetaData "BackendKey" "Database.Persist.Sql.Orphan.PersistStore" "persistent-2.14.2.0-1uV2T4Dmqw9CguKeHVwHjk" 'True) (C1 ('MetaCons "SqlWriteBackendKey" 'PrefixI 'True) (S1 ('MetaSel ('Just "unSqlWriteBackendKey") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int64))) | |
type SqlBackendCanRead backend = (BackendCompatible SqlBackend backend, PersistQueryRead backend, PersistStoreRead backend, PersistUniqueRead backend) #
A constraint synonym which witnesses that a backend is SQL and can run read queries.
type SqlBackendCanWrite backend = (SqlBackendCanRead backend, PersistQueryWrite backend, PersistStoreWrite backend, PersistUniqueWrite backend) #
A constraint synonym which witnesses that a backend is SQL and can run read and write queries.
type SqlReadT (m :: Type -> Type) a = forall backend. SqlBackendCanRead backend => ReaderT backend m a #
Like SqlPersistT but compatible with any SQL backend which can handle read queries.
type SqlWriteT (m :: Type -> Type) a = forall backend. SqlBackendCanWrite backend => ReaderT backend m a #
Like SqlPersistT but compatible with any SQL backend which can handle read and write queries.
type IsSqlBackend backend = (IsPersistBackend backend, BaseBackend backend ~ SqlBackend) #
A backend which is a wrapper around SqlBackend.
type PersistUnique a = PersistUniqueWrite a #
A backwards-compatible alias for those that don't care about distinguishing between read and write queries. It signifies the assumption that, by default, a backend can write as well as read.
type PersistStore a = PersistStoreWrite a #
A backwards-compatible alias for those that don't care about distinguishing between read and write queries. It signifies the assumption that, by default, a backend can write as well as read.
selectKeys :: forall record backend (m :: Type -> Type). (PersistQueryRead backend, MonadResource m, PersistRecordBackend record backend, MonadReader backend m) => [Filter record] -> [SelectOpt record] -> ConduitM () (Key record) m () #
Get the Keys of all records matching the given criterion.
For an example, see selectList.
class (PersistCore backend, PersistStoreRead backend) => PersistQueryRead backend where #
Backends supporting conditional read operations.
Minimal complete definition
Methods
selectSourceRes :: forall record (m1 :: Type -> Type) (m2 :: Type -> Type). (PersistRecordBackend record backend, MonadIO m1, MonadIO m2) => [Filter record] -> [SelectOpt record] -> ReaderT backend m1 (Acquire (ConduitM () (Entity record) m2 ())) #
Get all records matching the given criterion in the specified order. Returns also the identifiers.
NOTE: This function returns an Acquire and a ConduitM, which implies that it streams from the database. It does not. Please use selectList to simplify the code. If you want streaming behavior, consider persistent-pagination which efficiently chunks a query into ranges, or investigate a backend-specific streaming solution.
selectFirst :: forall (m :: Type -> Type) record. (MonadIO m, PersistRecordBackend record backend) => [Filter record] -> [SelectOpt record] -> ReaderT backend m (Maybe (Entity record)) #
Get just the first record for the criterion.
selectKeysRes :: forall (m1 :: Type -> Type) (m2 :: Type -> Type) record. (MonadIO m1, MonadIO m2, PersistRecordBackend record backend) => [Filter record] -> [SelectOpt record] -> ReaderT backend m1 (Acquire (ConduitM () (Key record) m2 ())) #
Get the Keys of all records matching the given criterion.
class (PersistQueryRead backend, PersistStoreWrite backend) => PersistQueryWrite backend where #
Backends supporting conditional write operations
Methods
updateWhere :: forall (m :: Type -> Type) record. (MonadIO m, PersistRecordBackend record backend) => [Filter record] -> [Update record] -> ReaderT backend m () #
Update individual fields on any record matching the given criterion.
deleteWhere :: forall (m :: Type -> Type) record. (MonadIO m, PersistRecordBackend record backend) => [Filter record] -> ReaderT backend m () #
Delete all records matching the given criterion.
checkUniqueUpdateable :: forall record backend (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, PersistUniqueRead backend) => Entity record -> ReaderT backend m (Maybe (Unique record)) #
Check whether there are any conflicts for unique keys with this entity and existing entities in the database.
Returns Nothing if the entity would stay unique, and could thus safely be updated. on a conflict returns the conflicting key
This is similar to checkUnique, except it's useful for updating - when the particular entity already exists, it would normally conflict with itself. This variant ignores those conflicts
Example usage
We use schema-1 and dataset-1 here.
This would be Nothing:
mAlanConst <- checkUnique $ User "Alan" 70
While this would be Just because SPJ already exists:
mSpjConst <- checkUnique $ User "SPJ" 60
Since: persistent-2.11.0.0
checkUnique :: forall record backend (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, PersistUniqueRead backend) => record -> ReaderT backend m (Maybe (Unique record)) #
Check whether there are any conflicts for unique keys with this entity and existing entities in the database.
Returns Nothing if the entity would be unique, and could thus safely be inserted. on a conflict returns the conflicting key
Example usage
replaceUnique :: forall record backend (m :: Type -> Type). (MonadIO m, Eq (Unique record), PersistRecordBackend record backend, PersistUniqueWrite backend) => Key record -> record -> ReaderT backend m (Maybe (Unique record)) #
Attempt to replace the record of the given key with the given new record. First query the unique fields to make sure the replacement maintains uniqueness constraints.
Return Nothing if the replacement was made. If uniqueness is violated, return a Just with the Unique violation
Since: persistent-1.2.2.0
getByValue :: forall record (m :: Type -> Type) backend. (MonadIO m, PersistUniqueRead backend, PersistRecordBackend record backend, AtLeastOneUniqueKey record) => record -> ReaderT backend m (Maybe (Entity record)) #
A modification of getBy, which takes the PersistEntity itself instead of a Unique record. Returns a record matching one of the unique keys. This function makes the most sense on entities with a single Unique constructor.
Example usage
onlyUnique :: forall record backend (m :: Type -> Type). (MonadIO m, PersistUniqueWrite backend, PersistRecordBackend record backend, OnlyOneUniqueKey record) => record -> ReaderT backend m (Unique record) #
Return the single unique key for a record.
Example usage
We use shcema-1 and dataset-1 here.
onlySimonConst :: MonadIO m => ReaderT SqlBackend m (Unique User) onlySimonConst = onlyUnique $ User "Simon" 999
mSimonConst <- onlySimonConst
mSimonConst would be Simon's uniqueness constraint. Note that onlyUnique doesn't work if there're more than two constraints. It will fail with a type error instead.
insertUniqueEntity :: forall record backend (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, PersistUniqueWrite backend, SafeToInsert record) => record -> ReaderT backend m (Maybe (Entity record)) #
Like insertEntity, but returns Nothing when the record couldn't be inserted because of a uniqueness constraint.
Example usage
We use schema-2 and dataset-1 here.
insertUniqueSpjEntity :: MonadIO m => ReaderT SqlBackend m (Maybe (Entity User)) insertUniqueSpjEntity = insertUniqueEntity $ User "SPJ" 50
mSpjEnt <- insertUniqueSpjEntity
The above query results Nothing as SPJ already exists.
insertUniqueAlexaEntity :: MonadIO m => ReaderT SqlBackend m (Maybe (Entity User)) insertUniqueAlexaEntity = insertUniqueEntity $ User "Alexa" 3
mAlexaEnt <- insertUniqueSpjEntity
Because there's no such unique keywords of the given record, the above query when applied on dataset-1, will produce this:
+----+-------+-----+ | id | name | age | +----+-------+-----+ | 1 | SPJ | 40 | +----+-------+-----+ | 2 | Simon | 41 | +----+-------+-----+ | 3 | Alexa | 3 | +----+-------+-----+
Since: persistent-2.7.1
insertBy :: forall record backend (m :: Type -> Type). (MonadIO m, PersistUniqueWrite backend, PersistRecordBackend record backend, AtLeastOneUniqueKey record, SafeToInsert record) => record -> ReaderT backend m (Either (Entity record) (Key record)) #
Insert a value, checking for conflicts with any unique constraints. If a duplicate exists in the database, it is returned as Left. Otherwise, the new 'Key is returned as Right.
Example usage
With schema-2 and dataset-1, we have following lines of code:
l1 <- insertBy $ User "SPJ" 20 l2 <- insertBy $ User "XXX" 41 l3 <- insertBy $ User "SPJ" 40 r1 <- insertBy $ User "XXX" 100
First three lines return Left because there're duplicates in given record's uniqueness constraints. While the last line returns a new key as Right.
onlyOneUniqueDef :: (OnlyOneUniqueKey record, Monad proxy) => proxy record -> UniqueDef #
Given a proxy for a PersistEntity record, this returns the sole UniqueDef for that entity.
Since: persistent-2.13.0.0
class PersistStoreRead backend => PersistUniqueRead backend where #
Queries against Unique keys (other than the id Key).
Please read the general Persistent documentation to learn how to create Unique keys.
Using this with an Entity without a Unique key leads to undefined behavior. A few of these functions require a single Unique, so using an Entity with multiple Uniques is also undefined. In these cases persistent's goal is to throw an exception as soon as possible, but persistent is still transitioning to that.
SQL backends automatically create uniqueness constraints, but for MongoDB you must manually place a unique index on a field to have a uniqueness constraint.
Methods
getBy :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Unique record -> ReaderT backend m (Maybe (Entity record)) #
Get a record by unique key, if available. Returns also the identifier.
Example usage
getBySpjName :: MonadIO m => ReaderT SqlBackend m (Maybe (Entity User)) getBySpjName = getBy $ UniqueUserName "SPJ"
mSpjEnt <- getBySpjName
The above query when applied on dataset-1, will get this entity:
+----+------+-----+ | id | name | age | +----+------+-----+ | 1 | SPJ | 40 | +----+------+-----+
class (PersistUniqueRead backend, PersistStoreWrite backend) => PersistUniqueWrite backend where #
Some functions in this module (insertUnique, insertBy, and replaceUnique) first query the unique indexes to check for conflicts. You could instead optimistically attempt to perform the operation (e.g. replace instead of replaceUnique). However,
- there is some fragility to trying to catch the correct exception and determing the column of failure;
- an exception will automatically abort the current SQL transaction.
Minimal complete definition
Methods
deleteBy :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Unique record -> ReaderT backend m () #
Delete a specific record by unique key. Does nothing if no record matches.
Example usage
insertUnique :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => record -> ReaderT backend m (Maybe (Key record)) #
Like insert, but returns Nothing when the record couldn't be inserted because of a uniqueness constraint.
Example usage
With schema-1 and dataset-1, we try to insert the following two records:
linusId <- insertUnique $ User "Linus" 48 spjId <- insertUnique $ User "SPJ" 90
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |Linus |48 | +-----+------+-----+
Linus's record was inserted to dataset-1, while SPJ wasn't because SPJ already exists in dataset-1.
Arguments
| :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, OnlyOneUniqueKey record, SafeToInsert record) | |
| => record | new record to insert |
| -> [Update record] | updates to perform if the record already exists |
| -> ReaderT backend m (Entity record) | the record in the database after the operation |
Update based on a uniqueness constraint or insert:
- insert the new record if it does not exist;
- If the record exists (matched via it's uniqueness constraint), then update the existing record with the parameters which is passed on as list to the function.
Example usage
First, we try to explain upsert using schema-1 and dataset-1.
upsertSpj :: MonadIO m => [Update User] -> ReaderT SqlBackend m (Maybe (Entity User)) upsertSpj updates = upsert (User "SPJ" 999) updates
mSpjEnt <- upsertSpj [UserAge +=. 15]
The above query when applied on dataset-1, will produce this:
+-----+-----+--------+ |id |name |age | +-----+-----+--------+ |1 |SPJ |40 -> 55| +-----+-----+--------+ |2 |Simon|41 | +-----+-----+--------+
upsertX :: MonadIO m => [Update User] -> ReaderT SqlBackend m (Maybe (Entity User)) upsertX updates = upsert (User "X" 999) updates
mXEnt <- upsertX [UserAge +=. 15]
The above query when applied on dataset-1, will produce this:
+-----+-----+--------+ |id |name |age | +-----+-----+--------+ |1 |SPJ |40 | +-----+-----+--------+ |2 |Simon|41 | +-----+-----+--------+ |3 |X |999 | +-----+-----+--------+
Next, what if the schema has two uniqueness constraints? Let's check it out using schema-2:
mSpjEnt <- upsertSpj [UserAge +=. 15]
This fails with a compile-time type error alerting us to the fact that this record has multiple unique keys, and suggests that we look for upsertBy to select the unique key we want.
Arguments
| :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) | |
| => Unique record | uniqueness constraint to find by |
| -> record | new record to insert |
| -> [Update record] | updates to perform if the record already exists |
| -> ReaderT backend m (Entity record) | the record in the database after the operation |
Update based on a given uniqueness constraint or insert:
- insert the new record if it does not exist;
- update the existing record that matches the given uniqueness constraint.
Example usage
We try to explain upsertBy using schema-2 and dataset-1.
upsertBySpjName :: MonadIO m => User -> [Update User] -> ReaderT SqlBackend m (Entity User) upsertBySpjName record updates = upsertBy (UniqueUserName "SPJ") record updates
mSpjEnt <- upsertBySpjName (Person "X" 999) [PersonAge += .15]
The above query will alter dataset-1 to:
+-----+-----+--------+ |id |name |age | +-----+-----+--------+ |1 |SPJ |40 -> 55| +-----+-----+--------+ |2 |Simon|41 | +-----+-----+--------+
upsertBySimonAge :: MonadIO m => User -> [Update User] -> ReaderT SqlBackend m (Entity User) upsertBySimonAge record updates = upsertBy (UniqueUserName "SPJ") record updates
mPhilipEnt <- upsertBySimonAge (User "X" 999) [UserName =. "Philip"]
The above query will alter dataset-1 to:
+----+-----------------+-----+ | id | name | age | +----+-----------------+-----+ | 1 | SPJ | 40 | +----+-----------------+-----+ | 2 | Simon -> Philip | 41 | +----+-----------------+-----+
upsertByUnknownName :: MonadIO m => User -> [Update User] -> ReaderT SqlBackend m (Entity User) upsertByUnknownName record updates = upsertBy (UniqueUserName "Unknown") record updates
mXEnt <- upsertByUnknownName (User "X" 999) [UserAge +=. 15]
This query will alter dataset-1 to:
+-----+-----+-----+ |id |name |age | +-----+-----+-----+ |1 |SPJ |40 | +-----+-----+-----+ |2 |Simon|41 | +-----+-----+-----+ |3 |X |999 | +-----+-----+-----+
Arguments
| :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) | |
| => [record] | A list of the records you want to insert or replace. |
| -> ReaderT backend m () |
Put many records into db
- insert new records that do not exist (or violate any unique constraints)
- replace existing records (matching any unique constraint)
Since: persistent-2.8.1
class PersistEntity record => OnlyOneUniqueKey record where #
This class is used to ensure that upsert is only called on records that have a single Unique key. The quasiquoter automatically generates working instances for appropriate records, and generates TypeError instances for records that have 0 or multiple unique keys.
Since: persistent-2.10.0
Methods
onlyUniqueP :: record -> Unique record #
type NoUniqueKeysError ty = (('Text "The entity " :<>: 'ShowType ty) :<>: 'Text " does not have any unique keys.") :$$: ('Text "The function you are trying to call requires a unique key " :<>: 'Text "to be defined on the entity.") #
This is an error message. It is used when writing instances of OnlyOneUniqueKey for an entity that has no unique keys.
Since: persistent-2.10.0
type MultipleUniqueKeysError ty = ((('Text "The entity " :<>: 'ShowType ty) :<>: 'Text " has multiple unique keys.") :$$: ('Text "The function you are trying to call requires only a single " :<>: 'Text "unique key.")) :$$: (('Text "There is probably a variant of the function with 'By' " :<>: 'Text "appended that will allow you to select a unique key ") :<>: 'Text "for the operation.") #
This is an error message. It is used when an entity has multiple unique keys, and the function expects a single unique key.
Since: persistent-2.10.0
class PersistEntity record => AtLeastOneUniqueKey record where #
This class is used to ensure that functions requring at least one unique key are not called with records that have 0 unique keys. The quasiquoter automatically writes working instances for appropriate entities, and generates TypeError instances for records that have 0 unique keys.
Since: persistent-2.10.0
Methods
requireUniquesP :: record -> NonEmpty (Unique record) #
data SqlBackend #
A SqlBackend represents a handle or connection to a database. It contains functions and values that allow databases to have more optimized implementations, as well as references that benefit performance and sharing.
Instead of using the SqlBackend constructor directly, use the mkSqlBackend function.
A SqlBackend is *not* thread-safe. You should not assume that a SqlBackend can be shared among threads and run concurrent queries. This *will* result in problems. Instead, you should create a , known as a Pool SqlBackendConnectionPool, and pass that around in multi-threaded applications.
To run actions in the persistent library, you should use the runSqlConn function. If you're using a multithreaded application, use the runSqlPool function.
Instances
| HasPersistBackend SqlBackend | |
Defined in Database.Persist.SqlBackend.Internal Associated Types type BaseBackend SqlBackend # Methods | |
| IsPersistBackend SqlBackend | |
Defined in Database.Persist.SqlBackend.Internal Methods | |
| newtype BackendKey SqlBackend | |
Defined in Database.Persist.Sql.Orphan.PersistStore | |
| type BaseBackend SqlBackend | |
Defined in Database.Persist.SqlBackend.Internal | |
| type Rep (BackendKey SqlBackend) | |
Defined in Database.Persist.Sql.Orphan.PersistStore type Rep (BackendKey SqlBackend) = D1 ('MetaData "BackendKey" "Database.Persist.Sql.Orphan.PersistStore" "persistent-2.14.2.0-1uV2T4Dmqw9CguKeHVwHjk" 'True) (C1 ('MetaCons "SqlBackendKey" 'PrefixI 'True) (S1 ('MetaSel ('Just "unSqlBackendKey") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int64))) | |
insertRecord :: forall record backend (m :: Type -> Type). (PersistEntityBackend record ~ BaseBackend backend, PersistEntity record, MonadIO m, PersistStoreWrite backend, SafeToInsert record, HasCallStack) => record -> ReaderT backend m record #
Like insertEntity but just returns the record instead of Entity.
Example usage
insertDaveRecord :: MonadIO m => ReaderT SqlBackend m User insertDaveRecord = insertRecord $ User "Dave" 50
dave <- insertDaveRecord
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |Dave |50 | +-----+------+-----+
Since: persistent-2.6.1
getEntity :: forall e backend (m :: Type -> Type). (PersistStoreRead backend, PersistRecordBackend e backend, MonadIO m) => Key e -> ReaderT backend m (Maybe (Entity e)) #
Like get, but returns the complete Entity.
Example usage
getSpjEntity :: MonadIO m => ReaderT SqlBackend m (Maybe (Entity User)) getSpjEntity = getEntity spjId
mSpjEnt <- getSpjEntity
The above query when applied on dataset-1, will get this entity:
+----+------+-----+ | id | name | age | +----+------+-----+ | 1 | SPJ | 40 | +----+------+-----+
insertEntity :: forall e backend (m :: Type -> Type). (PersistStoreWrite backend, PersistRecordBackend e backend, SafeToInsert e, MonadIO m, HasCallStack) => e -> ReaderT backend m (Entity e) #
Like insert, but returns the complete Entity.
Example usage
insertHaskellEntity :: MonadIO m => ReaderT SqlBackend m (Entity User) insertHaskellEntity = insertEntity $ User "Haskell" 81
haskellEnt <- insertHaskellEntity
The above query when applied on dataset-1, will produce this:
+----+---------+-----+ | id | name | age | +----+---------+-----+ | 1 | SPJ | 40 | +----+---------+-----+ | 2 | Simon | 41 | +----+---------+-----+ | 3 | Haskell | 81 | +----+---------+-----+
belongsToJust :: forall ent1 ent2 backend (m :: Type -> Type). (PersistStoreRead backend, PersistEntity ent1, PersistRecordBackend ent2 backend, MonadIO m) => (ent1 -> Key ent2) -> ent1 -> ReaderT backend m ent2 #
Same as belongsTo, but uses getJust and therefore is similarly unsafe.
belongsTo :: forall ent1 ent2 backend (m :: Type -> Type). (PersistStoreRead backend, PersistEntity ent1, PersistRecordBackend ent2 backend, MonadIO m) => (ent1 -> Maybe (Key ent2)) -> ent1 -> ReaderT backend m (Maybe ent2) #
Curry this to make a convenience function that loads an associated model.
foreign = belongsTo foreignId
getJustEntity :: forall record backend (m :: Type -> Type). (PersistEntityBackend record ~ BaseBackend backend, MonadIO m, PersistEntity record, PersistStoreRead backend) => Key record -> ReaderT backend m (Entity record) #
Same as getJust, but returns an Entity instead of just the record.
Example usage
getJustEntitySpj :: MonadIO m => ReaderT SqlBackend m (Entity User) getJustEntitySpj = getJustEntity spjId
spjEnt <- getJustEntitySpj
The above query when applied on dataset-1, will get this entity:
+----+------+-----+ | id | name | age | +----+------+-----+ | 1 | SPJ | 40 | +----+------+-----+
Since: persistent-2.6.1
getJust :: forall record backend (m :: Type -> Type). (PersistStoreRead backend, PersistRecordBackend record backend, MonadIO m) => Key record -> ReaderT backend m record #
Same as get, but for a non-null (not Maybe) foreign key. Unsafe unless your database is enforcing that the foreign key is valid.
Example usage
getJustSpj :: MonadIO m => ReaderT SqlBackend m User getJustSpj = getJust spjId
spj <- getJust spjId
The above query when applied on dataset-1, will get this record:
+----+------+-----+ | id | name | age | +----+------+-----+ | 1 | SPJ | 40 | +----+------+-----+
getJustUnknown :: MonadIO m => ReaderT SqlBackend m User getJustUnknown = getJust unknownId
mrx <- getJustUnknown
This just throws an error.
liftPersist :: (MonadIO m, MonadReader backend m) => ReaderT backend IO b -> m b #
withCompatibleBackend :: forall sup sub (m :: Type -> Type) a. BackendCompatible sup sub => ReaderT sup m a -> ReaderT sub m a #
Run a query against a compatible backend, by projecting the backend
This is a helper for using queries which run against a specific backend type that your backend is compatible with.
Since: persistent-2.12.0
withBaseBackend :: forall backend (m :: Type -> Type) a. HasPersistBackend backend => ReaderT (BaseBackend backend) m a -> ReaderT backend m a #
Run a query against a larger backend by plucking out BaseBackend backend
This is a helper for reusing existing queries when expanding the backend type.
Since: persistent-2.12.0
type family BaseBackend backend #
Instances
| type BaseBackend SqlReadBackend | |
Defined in Database.Persist.Sql.Types.Internal | |
| type BaseBackend SqlWriteBackend | |
Defined in Database.Persist.Sql.Types.Internal | |
| type BaseBackend SqlBackend | |
Defined in Database.Persist.SqlBackend.Internal | |
class HasPersistBackend backend where #
Class which allows the plucking of a BaseBackend backend from some larger type. For example, instance HasPersistBackend (SqlReadBackend, Int) where type BaseBackend (SqlReadBackend, Int) = SqlBackend persistBackend = unSqlReadBackend . fst
Associated Types
type BaseBackend backend #
Methods
persistBackend :: backend -> BaseBackend backend #
Instances
| HasPersistBackend SqlReadBackend | |
Defined in Database.Persist.Sql.Types.Internal Associated Types type BaseBackend SqlReadBackend # Methods persistBackend :: SqlReadBackend -> BaseBackend SqlReadBackend # | |
| HasPersistBackend SqlWriteBackend | |
Defined in Database.Persist.Sql.Types.Internal Associated Types type BaseBackend SqlWriteBackend # Methods persistBackend :: SqlWriteBackend -> BaseBackend SqlWriteBackend # | |
| HasPersistBackend SqlBackend | |
Defined in Database.Persist.SqlBackend.Internal Associated Types type BaseBackend SqlBackend # Methods | |
class HasPersistBackend backend => IsPersistBackend backend #
Class which witnesses that backend is essentially the same as BaseBackend backend. That is, they're isomorphic and backend is just some wrapper over BaseBackend backend.
Minimal complete definition
Instances
| IsPersistBackend SqlReadBackend | |
Defined in Database.Persist.Sql.Types.Internal Methods mkPersistBackend :: BaseBackend SqlReadBackend -> SqlReadBackend # | |
| IsPersistBackend SqlWriteBackend | |
Defined in Database.Persist.Sql.Types.Internal Methods mkPersistBackend :: BaseBackend SqlWriteBackend -> SqlWriteBackend # | |
| IsPersistBackend SqlBackend | |
Defined in Database.Persist.SqlBackend.Internal Methods | |
class BackendCompatible sup sub where #
This class witnesses that two backend are compatible, and that you can convert from the sub backend into the sup backend. This is similar to the HasPersistBackend and IsPersistBackend classes, but where you don't want to fix the type associated with the PersistEntityBackend of a record.
Generally speaking, where you might have:
foo :: (PersistEntityrecord ,PeristEntityBackendrecord ~BaseBackendbackend ,IsSqlBackendbackend )
this can be replaced with:
foo :: (PersistEntityrecord, ,PersistEntityBackendrecord ~ backend ,BackendCompatibleSqlBackendbackend )
This works for SqlReadBackend because of the instance , without needing to go through the BackendCompatible SqlBackend SqlReadBackendBaseBackend type family.
Likewise, functions that are currently hardcoded to use SqlBackend can be generalized:
-- before: asdf ::ReaderTSqlBackendm () asdf = pure () -- after: asdf' ::BackendCompatibleSqlBackend backend => ReaderT backend m () asdf' =withCompatibleBackendasdf
Since: persistent-2.7.1
Methods
projectBackend :: sub -> sup #
type PersistRecordBackend record backend = (PersistEntity record, PersistEntityBackend record ~ BaseBackend backend) #
A convenient alias for common type signatures
class (PersistEntity record, PersistEntityBackend record ~ backend, PersistCore backend) => ToBackendKey backend record where #
ToBackendKey converts a PersistEntity Key into a BackendKey This can be used by each backend to convert between a Key and a plain Haskell type. For Sql, that is done with toSqlKey and fromSqlKey.
By default, a PersistEntity uses the default BackendKey for its Key and is an instance of ToBackendKey
A Key that instead uses a custom type will not be an instance of ToBackendKey.
Methods
toBackendKey :: Key record -> BackendKey backend #
fromBackendKey :: BackendKey backend -> Key record #
data family BackendKey backend #
Instances
class PersistCore backend #
Associated Types
data BackendKey backend #
class (Show (BackendKey backend), Read (BackendKey backend), Eq (BackendKey backend), Ord (BackendKey backend), PersistCore backend, PersistField (BackendKey backend), ToJSON (BackendKey backend), FromJSON (BackendKey backend)) => PersistStoreRead backend where #
Minimal complete definition
Methods
get :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> ReaderT backend m (Maybe record) #
Get a record by identifier, if available.
Example usage
getMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => [Key record] -> ReaderT backend m (Map (Key record) record) #
Get many records by their respective identifiers, if available.
Example usage
getUsers :: MonadIO m => ReaderT SqlBackend m (Map (Key User) User) getUsers = getMany allkeys
musers <- getUsers
The above query when applied on dataset-1, will get these records:
+----+-------+-----+ | id | name | age | +----+-------+-----+ | 1 | SPJ | 40 | +----+-------+-----+ | 2 | Simon | 41 | +----+-------+-----+
Since: persistent-2.8.1
class (Show (BackendKey backend), Read (BackendKey backend), Eq (BackendKey backend), Ord (BackendKey backend), PersistStoreRead backend, PersistField (BackendKey backend), ToJSON (BackendKey backend), FromJSON (BackendKey backend)) => PersistStoreWrite backend where #
Methods
insert :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => record -> ReaderT backend m (Key record) #
Create a new record in the database, returning an automatically created key (in SQL an auto-increment id).
Example usage
Using schema-1 and dataset-1, let's insert a new user John.
insertJohn :: MonadIO m => ReaderT SqlBackend m (Key User) insertJohn = insert $ User "John" 30
johnId <- insertJohn
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |John |30 | +-----+------+-----+
insert_ :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => record -> ReaderT backend m () #
Same as insert, but doesn't return a Key.
Example usage
insertJohn :: MonadIO m => ReaderT SqlBackend m (Key User) insertJohn = insert_ $ User "John" 30
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |John |30 | +-----+------+-----+
insertMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => [record] -> ReaderT backend m [Key record] #
Create multiple records in the database and return their Keys.
If you don't need the inserted Keys, use insertMany_.
The MongoDB and PostgreSQL backends insert all records and retrieve their keys in one database query.
The SQLite and MySQL backends use the slow, default implementation of mapM insert.
Example usage
insertUsers :: MonadIO m => ReaderT SqlBackend m [Key User] insertUsers = insertMany [User "John" 30, User "Nick" 32, User "Jane" 20]
userIds <- insertUsers
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |John |30 | +-----+------+-----+ |4 |Nick |32 | +-----+------+-----+ |5 |Jane |20 | +-----+------+-----+
insertMany_ :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend, SafeToInsert record) => [record] -> ReaderT backend m () #
Same as insertMany, but doesn't return any Keys.
The MongoDB, PostgreSQL, SQLite and MySQL backends insert all records in one database query.
Example usage
insertUsers_ :: MonadIO m => ReaderT SqlBackend m () insertUsers_ = insertMany_ [User "John" 30, User "Nick" 32, User "Jane" 20]
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |John |30 | +-----+------+-----+ |4 |Nick |32 | +-----+------+-----+ |5 |Jane |20 | +-----+------+-----+
insertEntityMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => [Entity record] -> ReaderT backend m () #
Same as insertMany_, but takes an Entity instead of just a record.
Useful when migrating data from one entity to another and want to preserve ids.
The MongoDB, PostgreSQL, SQLite and MySQL backends insert all records in one database query.
Example usage
insertUserEntityMany :: MonadIO m => ReaderT SqlBackend m () insertUserEntityMany = insertEntityMany [SnakeEntity, EvaEntity]
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |Snake |38 | +-----+------+-----+ |4 |Eva |38 | +-----+------+-----+
insertKey :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> record -> ReaderT backend m () #
Create a new record in the database using the given key.
Example usage
insertAliceKey :: MonadIO m => Key User -> ReaderT SqlBackend m () insertAliceKey key = insertKey key $ User "Alice" 20
insertAliceKey $ UserKey {unUserKey = SqlBackendKey {unSqlBackendKey = 3}}The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |Alice |20 | +-----+------+-----+
repsert :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> record -> ReaderT backend m () #
Put the record in the database with the given key. Unlike replace, if a record with the given key does not exist then a new record will be inserted.
Example usage
We try to explain upsertBy using schema-1 and dataset-1.
First, we insert Philip to dataset-1.
insertPhilip :: MonadIO m => ReaderT SqlBackend m (Key User) insertPhilip = insert $ User "Philip" 42
philipId <- insertPhilip
This query will produce:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |Philip|42 | +-----+------+-----+
repsertHaskell :: MonadIO m => Key record -> ReaderT SqlBackend m () repsertHaskell id = repsert id $ User "Haskell" 81
repsertHaskell philipId
This query will replace Philip's record with Haskell's one:
+-----+-----------------+--------+ |id |name |age | +-----+-----------------+--------+ |1 |SPJ |40 | +-----+-----------------+--------+ |2 |Simon |41 | +-----+-----------------+--------+ |3 |Philip -> Haskell|42 -> 81| +-----+-----------------+--------+
repsert inserts the given record if the key doesn't exist.
repsertXToUnknown :: MonadIO m => ReaderT SqlBackend m () repsertXToUnknown = repsert unknownId $ User "X" 999
For example, applying the above query to dataset-1 will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |40 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+ |3 |X |999 | +-----+------+-----+
repsertMany :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => [(Key record, record)] -> ReaderT backend m () #
Put many entities into the database.
Batch version of repsert for SQL backends.
Useful when migrating data from one entity to another and want to preserve ids.
Example usage
repsertManyUsers :: MonadIO m =>ReaderT SqlBackend m () repsertManyusers = repsertMany [(simonId, User "Philip" 20), (unknownId999, User "Mr. X" 999)]
The above query when applied on dataset-1, will produce this:
+-----+----------------+---------+ |id |name |age | +-----+----------------+---------+ |1 |SPJ |40 | +-----+----------------+---------+ |2 |Simon -> Philip |41 -> 20 | +-----+----------------+---------+ |999 |Mr. X |999 | +-----+----------------+---------+
Since: persistent-2.8.1
replace :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> record -> ReaderT backend m () #
Replace the record in the database with the given key. Note that the result is undefined if such record does not exist, so you must use insertKey or repsert in these cases.
Example usage
With schema-1 schama-1 and dataset-1,
replaceSpj :: MonadIO m => User -> ReaderT SqlBackend m () replaceSpj record = replace spjId record
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |Mike |45 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+
updateGet :: forall record (m :: Type -> Type). (MonadIO m, PersistRecordBackend record backend) => Key record -> [Update record] -> ReaderT backend m record #
Update individual fields on a specific record, and retrieve the updated value from the database.
Note that this function will throw an exception if the given key is not found in the database.
Example usage
updateGetSpj :: MonadIO m => [Update User] -> ReaderT SqlBackend m User updateGetSpj updates = updateGet spjId updates
spj <- updateGetSpj [UserAge +=. 100]
The above query when applied on dataset-1, will produce this:
+-----+------+-----+ |id |name |age | +-----+------+-----+ |1 |SPJ |140 | +-----+------+-----+ |2 |Simon |41 | +-----+------+-----+
fromPersistValueJSON :: FromJSON a => PersistValue -> Either Text a #
Convenience function for getting a free PersistField instance from a type with JSON instances. The JSON parser used will accept JSON values other that object and arrays. So, if your instance serializes the data to a JSON string, this will still work.
Example usage in combination with toPersistValueJSON:
instance PersistField MyData where fromPersistValue = fromPersistValueJSON toPersistValue = toPersistValueJSON
toPersistValueJSON :: ToJSON a => a -> PersistValue #
Convenience function for getting a free PersistField instance from a type with JSON instances.
Example usage in combination with fromPersistValueJSON:
instance PersistField MyData where fromPersistValue = fromPersistValueJSON toPersistValue = toPersistValueJSON
entityIdFromJSON :: (PersistEntity record, FromJSON record) => Value -> Parser (Entity record) #
Predefined parseJSON. The input JSON looks like {"id": 1, "name": ...}.
The typical usage is:
instance FromJSON (Entity User) where parseJSON = entityIdFromJSON
entityIdToJSON :: (PersistEntity record, ToJSON record) => Entity record -> Value #
Predefined toJSON. The resulting JSON looks like {"id": 1, "name": ...}.
The typical usage is:
instance ToJSON (Entity User) where toJSON = entityIdToJSON
keyValueEntityFromJSON :: (PersistEntity record, FromJSON record) => Value -> Parser (Entity record) #
Predefined parseJSON. The input JSON looks like {"key": 1, "value": {"name": ...}}.
The typical usage is:
instance FromJSON (Entity User) where parseJSON = keyValueEntityFromJSON
keyValueEntityToJSON :: (PersistEntity record, ToJSON record) => Entity record -> Value #
Predefined toJSON. The resulting JSON looks like {"key": 1, "value": {"name": ...}}.
The typical usage is:
instance ToJSON (Entity User) where toJSON = keyValueEntityToJSON
entityValues :: PersistEntity record => Entity record -> [PersistValue] #
Get list of values corresponding to given entity.
tabulateEntity :: PersistEntity record => (forall a. EntityField record a -> a) -> Entity record #
Construct an by providing a value for each of the record's fields.Entity record
These constructions are equivalent:
entityMattConstructor, entityMattTabulate :: Entity User entityMattConstructor = Entity { entityKey = toSqlKey 123 , entityVal = User { userName = Matt , userAge = 33 } } entityMattTabulate = tabulateEntity $ \case UserId -> toSqlKey 123 UserName -> Matt UserAge -> 33 This is a specialization of tabulateEntityA, which allows you to construct an Entity by providing an Applicative action for each field instead of a regular function.
Since: persistent-2.14.0.0
Unique keys besides the Key.
Instances
| FinalResult (Unique val) Source # | |
Defined in Database.Esqueleto.Internal.Internal | |
data family EntityField record :: Type -> Type #
An EntityField is parameterised by the Haskell record it belongs to and the additional type of that field.
As of persistent-2.11.0.0, it's possible to use the OverloadedLabels language extension to refer to EntityField values polymorphically. See the documentation on SymbolToField for more information.
Instances
| SymbolToField sym rec typ => IsLabel sym (EntityField rec typ) | This instance delegates to Since: persistent-2.11.0.0 |
Defined in Database.Persist.Class.PersistEntity Methods fromLabel :: EntityField rec typ # | |
By default, a backend will automatically generate the key Instead you can specify a Primary key made up of unique values.
Instances
| (PersistEntity a, PersistEntityBackend a ~ backend, IsPersistBackend backend) => RawSql (Key a) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Key a -> (Int, [Text]) # rawSqlColCountReason :: Key a -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Key a) # | |
type family PersistEntityBackend record #
Persistent allows multiple different backends (databases).
class (PersistField (Key record), ToJSON (Key record), FromJSON (Key record), Show (Key record), Read (Key record), Eq (Key record), Ord (Key record)) => PersistEntity record where #
Persistent serialized Haskell records to the database. A Database Entity (A row in SQL, a document in MongoDB, etc) corresponds to a Key plus a Haskell record.
For every Haskell record type stored in the database there is a corresponding PersistEntity instance. An instance of PersistEntity contains meta-data for the record. PersistEntity also helps abstract over different record types. That way the same query interface can return a PersistEntity, with each query returning different types of Haskell records.
Some advanced type system capabilities are used to make this process type-safe. Persistent users usually don't need to understand the class associated data and functions.
Minimal complete definition
keyToValues, keyFromValues, persistIdField, entityDef, persistFieldDef, toPersistFields, fromPersistValues, tabulateEntityA, persistUniqueKeys, persistUniqueToFieldNames, persistUniqueToValues, fieldLens
Associated Types
type PersistEntityBackend record #
Persistent allows multiple different backends (databases).
By default, a backend will automatically generate the key Instead you can specify a Primary key made up of unique values.
data EntityField record :: Type -> Type #
An EntityField is parameterised by the Haskell record it belongs to and the additional type of that field.
As of persistent-2.11.0.0, it's possible to use the OverloadedLabels language extension to refer to EntityField values polymorphically. See the documentation on SymbolToField for more information.
Unique keys besides the Key.
Methods
keyToValues :: Key record -> [PersistValue] #
A lower-level key operation.
keyFromValues :: [PersistValue] -> Either Text (Key record) #
A lower-level key operation.
persistIdField :: EntityField record (Key record) #
A meta-operation to retrieve the Key EntityField.
entityDef :: proxy record -> EntityDef #
Retrieve the EntityDef meta-data for the record.
persistFieldDef :: EntityField record typ -> FieldDef #
Return meta-data for a given EntityField.
toPersistFields :: record -> [PersistValue] #
A meta-operation to get the database fields of a record.
fromPersistValues :: [PersistValue] -> Either Text record #
A lower-level operation to convert from database values to a Haskell record.
Arguments
| :: Applicative f | |
| => (forall a. EntityField record a -> f a) | A function that builds a fragment of a record in an |
| -> f (Entity record) |
This function allows you to build an by specifying an action that returns a value for the field in the callback function. Let's look at an example.Entity a
parseFromEnvironmentVariables :: IO (Entity User) parseFromEnvironmentVariables = tabulateEntityA $ \userField -> case userField of UserName -> getEnv USER_NAME UserAge -> do ageVar <- getEnv USER_AGE case readMaybe ageVar of Just age -> pure age Nothing -> error $ "Failed to parse Age from: " <> ageVar UserAddressId -> do addressVar <- getEnv USER_ADDRESS_ID pure $ AddressKey addressVar
Since: persistent-2.14.0.0
persistUniqueKeys :: record -> [Unique record] #
A meta operation to retrieve all the Unique keys.
persistUniqueToFieldNames :: Unique record -> NonEmpty (FieldNameHS, FieldNameDB) #
A lower level operation.
persistUniqueToValues :: Unique record -> [PersistValue] #
A lower level operation.
fieldLens :: EntityField record field -> forall (f :: Type -> Type). Functor f => (field -> f field) -> Entity record -> f (Entity record) #
Use a PersistField as a lens.
keyFromRecordM :: Maybe (record -> Key record) #
Extract a from a Key recordrecord value. Currently, this is only defined for entities using the Primary syntax for natural/composite keys. In a future version of persistent which incorporates the ID directly into the entity, this will always be Just.
Since: persistent-2.11.0.0
type family BackendSpecificUpdate backend record #
data FilterValue typ where #
Value to filter with. Highly dependant on the type of filter used.
Since: persistent-2.10.0
Constructors
| FilterValue :: forall typ. typ -> FilterValue typ | |
| FilterValues :: forall typ. [typ] -> FilterValue typ | |
| UnsafeValue :: forall a typ. PersistField a => a -> FilterValue typ |
Datatype that represents an entity, with both its Key and its Haskell record representation.
When using a SQL-based backend (such as SQLite or PostgreSQL), an Entity may take any number of columns depending on how many fields it has. In order to reconstruct your entity on the Haskell side, persistent needs all of your entity columns and in the right order. Note that you don't need to worry about this when using persistent's API since everything is handled correctly behind the scenes.
However, if you want to issue a raw SQL command that returns an Entity, then you have to be careful with the column order. While you could use SELECT Entity.* WHERE ... and that would work most of the time, there are times when the order of the columns on your database is different from the order that persistent expects (for example, if you add a new field in the middle of you entity definition and then use the migration code -- persistent will expect the column to be in the middle, but your DBMS will put it as the last column). So, instead of using a query like the one above, you may use rawSql (from the Database.Persist.Sql module) with its /entity selection placeholder/ (a double question mark ??). Using rawSql the query above must be written as SELECT ?? WHERE ... Then rawSql will replace ?? with the list of all columns that we need from your entity in the right order. If your query returns two entities (i.e. (Entity backend a, Entity backend b)), then you must you use SELECT ??, ?? WHERE ..., and so on.
Instances
| (PersistEntity rec, PersistField typ, SymbolToField sym rec typ) => HasField (sym :: Symbol) (SqlExpr (Entity rec)) (SqlExpr (Value typ)) Source # | This instance allows you to use Example: -- persistent model: BlogPost authorId PersonId title Text -- query: This is exactly equivalent to the following: blogPost :: SqlExpr (Entity BlogPost) blogPost ^. BlogPostTitle blogPost ^. #title blogPost.title There's another instance defined on Since: 3.5.4.0 |
| (PersistEntity rec, PersistField typ, SymbolToField sym rec typ) => HasField (sym :: Symbol) (SqlExpr (Maybe (Entity rec))) (SqlExpr (Value (Maybe typ))) Source # | This instance allows you to use Example: -- persistent model: Person name Text BlogPost title Text authorId PersonId -- query: The following forms are all equivalent: blogPost :: SqlExpr (Maybe (Entity BlogPost)) blogPost ?. BlogPostTitle blogPost ?. #title blogPost.title Since: 3.5.4.0 |
| (Generic (Key record), Generic record) => Generic (Entity record) | |
| (Read (Key record), Read record) => Read (Entity record) | |
| (Show (Key record), Show record) => Show (Entity record) | |
| ToAlias (SqlExpr (Entity a)) Source # | |
| ToAlias (SqlExpr (Maybe (Entity a))) Source # | |
| ToAliasReference (SqlExpr (Entity a)) Source # | |
| ToAliasReference (SqlExpr (Maybe (Entity a))) Source # | |
| ToMaybe (SqlExpr (Entity a)) Source # | |
| FromPreprocess (SqlExpr (Entity val)) => From (SqlExpr (Entity val)) Source # | |
| FromPreprocess (SqlExpr (Maybe (Entity val))) => From (SqlExpr (Maybe (Entity val))) Source # | |
| (PersistEntity val, BackendCompatible SqlBackend (PersistEntityBackend val)) => FromPreprocess (SqlExpr (Entity val)) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods fromPreprocess :: SqlQuery (PreprocessedFrom (SqlExpr (Entity val))) Source # | |
| (PersistEntity val, BackendCompatible SqlBackend (PersistEntityBackend val)) => FromPreprocess (SqlExpr (Maybe (Entity val))) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods fromPreprocess :: SqlQuery (PreprocessedFrom (SqlExpr (Maybe (Entity val)))) Source # | |
| (Eq (Key record), Eq record) => Eq (Entity record) | |
| (Ord (Key record), Ord record) => Ord (Entity record) | |
Defined in Database.Persist.Class.PersistEntity Methods compare :: Entity record -> Entity record -> Ordering # (<) :: Entity record -> Entity record -> Bool # (<=) :: Entity record -> Entity record -> Bool # (>) :: Entity record -> Entity record -> Bool # (>=) :: Entity record -> Entity record -> Bool # | |
| (TypeError (EntityErrorMessage a) :: Constraint) => SafeToInsert (Entity a) | |
Defined in Database.Persist.Class.PersistEntity | |
| (PersistEntity record, PersistField record, PersistField (Key record)) => PersistField (Entity record) | |
Defined in Database.Persist.Class.PersistEntity Methods toPersistValue :: Entity record -> PersistValue # fromPersistValue :: PersistValue -> Either Text (Entity record) # | |
| (PersistField record, PersistEntity record) => PersistFieldSql (Entity record) | |
| (PersistEntity record, PersistEntityBackend record ~ backend, IsPersistBackend backend) => RawSql (Entity record) | |
Defined in Database.Persist.Sql.Class Methods rawSqlCols :: (Text -> Text) -> Entity record -> (Int, [Text]) # rawSqlColCountReason :: Entity record -> String # rawSqlProcessRow :: [PersistValue] -> Either Text (Entity record) # | |
| PersistEntity ent => ToFrom (Table ent) (SqlExpr (Entity ent)) Source # | |
| PersistEntity a => SqlSelect (SqlExpr (Entity a)) (Entity a) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods sqlSelectCols :: IdentInfo -> SqlExpr (Entity a) -> (Builder, [PersistValue]) Source # sqlSelectColCount :: Proxy (SqlExpr (Entity a)) -> Int Source # sqlSelectProcessRow :: [PersistValue] -> Either Text (Entity a) Source # sqlInsertInto :: IdentInfo -> SqlExpr (Entity a) -> (Builder, [PersistValue]) Source # | |
| PersistEntity a => SqlSelect (SqlExpr (Maybe (Entity a))) (Maybe (Entity a)) Source # | |
Defined in Database.Esqueleto.Internal.Internal Methods sqlSelectCols :: IdentInfo -> SqlExpr (Maybe (Entity a)) -> (Builder, [PersistValue]) Source # sqlSelectColCount :: Proxy (SqlExpr (Maybe (Entity a))) -> Int Source # sqlSelectProcessRow :: [PersistValue] -> Either Text (Maybe (Entity a)) Source # sqlInsertInto :: IdentInfo -> SqlExpr (Maybe (Entity a)) -> (Builder, [PersistValue]) Source # | |
| type Rep (Entity record) | |
Defined in Database.Persist.Class.PersistEntity type Rep (Entity record) = D1 ('MetaData "Entity" "Database.Persist.Class.PersistEntity" "persistent-2.14.2.0-1uV2T4Dmqw9CguKeHVwHjk" 'False) (C1 ('MetaCons "Entity" 'PrefixI 'True) (S1 ('MetaSel ('Just "entityKey") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Key record)) :*: S1 ('MetaSel ('Just "entityVal") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 record))) | |
| type ToMaybeT (SqlExpr (Entity a)) Source # | |
class SymbolToField (sym :: Symbol) rec typ | sym rec -> typ where #
This type class is used with the OverloadedLabels extension to provide a more convenient means of using the EntityField type. EntityField definitions are prefixed with the type name to avoid ambiguity, but this ambiguity can result in verbose code.
If you have a table User with a name Text field, then the corresponding EntityField is UserName. With this, we can write #name :: .EntityField User Text
What's more fun is that the type is more general: it's actually #name :: (SymbolToField "name" rec typ) => EntityField rec typ
Which means it is *polymorphic* over the actual record. This allows you to write code that can be generic over the tables, provided they have the right fields.
Since: persistent-2.11.0.0
Methods
symbolToField :: EntityField rec typ #
class SafeToInsert a #
A type class which is used to witness that a type is safe to insert into the database without providing a primary key.
The TemplateHaskell function mkPersist will generate instances of this class for any entity that it works on. If the entity has a default primary key, then it provides a regular instance. If the entity has a Primary natural key, then this works fine. But if the entity has an Id column with no default=, then this does a TypeError and forces the user to use insertKey.
Since: persistent-2.14.0.0
Instances
| (TypeError (EntityErrorMessage a) :: Constraint) => SafeToInsert (Entity a) | |
Defined in Database.Persist.Class.PersistEntity | |
| (TypeError (FunctionErrorMessage a b) :: Constraint) => SafeToInsert (a -> b) | |
Defined in Database.Persist.Class.PersistEntity | |
class PersistField a where #
This class teaches Persistent how to take a custom type and marshal it to and from a PersistValue, allowing it to be stored in a database.
Examples
Simple Newtype
You can use newtype to add more type safety/readability to a basis type like ByteString. In these cases, just derive PersistField and PersistFieldSql:
{-# LANGUAGE GeneralizedNewtypeDeriving #-} newtype HashedPassword = HashedPassword ByteString deriving (Eq, Show, PersistField, PersistFieldSql) Smart Constructor Newtype
In this example, we create a PersistField instance for a newtype following the "Smart Constructor" pattern.
{-# LANGUAGE GeneralizedNewtypeDeriving #-} import qualified Data.Text as T import qualified Data.Char as C -- | An American Social Security Number newtype SSN = SSN ErrorMessage deriving (Eq, Show, PersistFieldSql) mkSSN :: ErrorMessage -> Either ErrorMessage SSN mkSSN t = if (T.length t == 9) && (T.all C.isDigit t) then Right $ SSN t else Left $ "Invalid SSN: " <> t instance PersistField SSN where toPersistValue (SSN t) = PersistText t fromPersistValue (PersistText t) = mkSSN t -- Handle cases where the database does not give us PersistText fromPersistValue x = Left $ "File.hs: When trying to deserialize an SSN: expected PersistText, received: " <> T.pack (show x) Tips:
- This file contain dozens of
PersistFieldinstances you can look at for examples. - Typically custom
PersistFieldinstances will only accept a singlePersistValueconstructor infromPersistValue. - Internal
PersistFieldinstances accept a wide variety ofPersistValues to accomodate e.g. storing booleans as integers, booleans or strings. - If you're making a custom instance and using a SQL database, you'll also need
PersistFieldSqlto specify the type of the database column.
Instances
newtype OverflowNatural #
Prior to persistent-2.11.0, we provided an instance of PersistField for the Natural type. This was in error, because Natural represents an infinite value, and databases don't have reasonable types for this.
The instance for Natural used the Int64 underlying type, which will cause underflow and overflow errors. This type has the exact same code in the instances, and will work seamlessly.
A more appropriate type for this is the Word series of types from Data.Word. These have a bounded size, are guaranteed to be non-negative, and are quite efficient for the database to store.
Since: persistent-2.11.0
Constructors
| OverflowNatural | |
Fields | |
Instances
overEntityFields :: ([FieldDef] -> [FieldDef]) -> EntityDef -> EntityDef #
Perform a mapping function over all of the entity fields, as determined by getEntityFieldsDatabase.
Since: persistent-2.13.0.0
getEntityKeyFields :: EntityDef -> NonEmpty FieldDef #
Since: persistent-2.13.0.0
setEntityIdDef :: EntityIdDef -> EntityDef -> EntityDef #
Since: persistent-2.13.0.0
setEntityId :: FieldDef -> EntityDef -> EntityDef #
getEntityIdField :: EntityDef -> Maybe FieldDef #
Since: persistent-2.13.0.0
getEntityId :: EntityDef -> EntityIdDef #
Since: persistent-2.13.0.0
isEntitySum :: EntityDef -> Bool #
Since: persistent-2.13.0.0
getEntityFieldsDatabase :: EntityDef -> [FieldDef] #
This returns all of the FieldDef defined for the EntityDef, including those fields that are marked as MigrationOnly (and therefore only present in the database) or SafeToRemove (and a migration will drop the column if it exists in the database).
For all the fields that are present on the Haskell-type, see getEntityFields.
Since: persistent-2.13.0.0
getEntityFields :: EntityDef -> [FieldDef] #
Retrieve the list of FieldDef that makes up the fields of the entity.
This does not return the fields for an Id column or an implicit id. It will return the key columns if you used the Primary syntax for defining the primary key.
This does not return fields that are marked SafeToRemove or MigrationOnly - so it only returns fields that are represented in the Haskell type. If you need those fields, use getEntityFieldsDatabase.
Since: persistent-2.13.0.0
getEntityForeignDefs :: EntityDef -> [ForeignDef] #
Since: persistent-2.13.0.0
getEntityComments :: EntityDef -> Maybe Text #
setEntityDBName :: EntityNameDB -> EntityDef -> EntityDef #
Since: persistent-2.13.0.0
getEntityDBName :: EntityDef -> EntityNameDB #
Return the database name for the given entity.
Since: persistent-2.13.0.0
getEntityHaskellName :: EntityDef -> EntityNameHS #
Retrieve the Haskell name of the given entity.
Since: persistent-2.13.0.0
getEntityUniques :: EntityDef -> [UniqueDef] #
Retrieve the list of UniqueDef from an EntityDef. As of version 2.14, this will also include the primary key on the entity, if one is defined. If you do not want the primary key, see getEntityUniquesNoPrimaryKey.
Since: persistent-2.13.0.0
isFieldMaybe :: FieldDef -> Bool #
Check if the field is `Maybe a`
Since: persistent-2.13.0.0
isFieldNullable :: FieldDef -> IsNullable #
Check if the field definition is nullable
Since: persistent-2.13.0.0
addFieldAttr :: FieldAttr -> FieldDef -> FieldDef #
Add an attribute to the list of field attributes.
Since: persistent-2.13.0.0
overFieldAttrs :: ([FieldAttr] -> [FieldAttr]) -> FieldDef -> FieldDef #
Modify the list of field attributes.
Since: persistent-2.13.0.0
setFieldAttrs :: [FieldAttr] -> FieldDef -> FieldDef #
data InsertSqlResult #
Constructors
| ISRSingle Text | |
| ISRInsertGet Text Text | |
| ISRManyKeys Text [PersistValue] |
A Statement is a representation of a database query that has been prepared and stored on the server side.
Constructors
| Statement | |
Fields
| |
renderCascadeAction :: CascadeAction -> Text #
Render a CascadeAction to Text such that it can be used in a SQL command.
Since: persistent-2.11.0
renderFieldCascade :: FieldCascade -> Text #
Renders a FieldCascade value such that it can be used in SQL migrations.
Since: persistent-2.11.0
A FieldCascade that does nothing.
Since: persistent-2.11.0
isHaskellField :: FieldDef -> Bool #
isFieldNotGenerated :: FieldDef -> Bool #
parseFieldAttrs :: [Text] -> [FieldAttr] #
Parse raw field attributes into structured form. Any unrecognized attributes will be preserved, identically as they are encountered, as FieldAttrOther values.
Since: persistent-2.11.0.0
entityPrimary :: EntityDef -> Maybe CompositeDef #
A Checkmark should be used as a field type whenever a uniqueness constraint should guarantee that a certain kind of record may appear at most once, but other kinds of records may appear any number of times.
NOTE: You need to mark any Checkmark fields as nullable (see the following example).
For example, suppose there's a Location entity that represents where a user has lived:
Location user UserId name Text current Checkmark nullable UniqueLocation user current
The UniqueLocation constraint allows any number of Inactive Locations to be current. However, there may be at most one current Location per user (i.e., either zero or one per user).
This data type works because of the way that SQL treats NULLable fields within uniqueness constraints. The SQL standard says that NULL values should be considered different, so we represent Inactive as SQL NULL, thus allowing any number of Inactive records. On the other hand, we represent Active as TRUE, so the uniqueness constraint will disallow more than one Active record.
Note: There may be DBMSs that do not respect the SQL standard's treatment of NULL values on uniqueness constraints, please check if this data type works before relying on it.
The SQL BOOLEAN type is used because it's the smallest data type available. Note that we never use FALSE, just TRUE and NULL. Provides the same behavior Maybe () would if () was a valid PersistField.
Constructors
| Active | When used on a uniqueness constraint, there may be at most one |
| Inactive | When used on a uniqueness constraint, there may be any number of |
Instances
data IsNullable #
Constructors
| Nullable !WhyNullable | |
| NotNullable |
Instances
| Show IsNullable | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> IsNullable -> ShowS # show :: IsNullable -> String # showList :: [IsNullable] -> ShowS # | |
| Eq IsNullable | |
Defined in Database.Persist.Types.Base | |
data WhyNullable #
The reason why a field is nullable is very important. A field that is nullable because of a Maybe tag will have its type changed from A to Maybe A. OTOH, a field that is nullable because of a nullable tag will remain with the same type.
Constructors
| ByMaybeAttr | |
| ByNullableAttr |
Instances
| Show WhyNullable | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> WhyNullable -> ShowS # show :: WhyNullable -> String # showList :: [WhyNullable] -> ShowS # | |
| Eq WhyNullable | |
Defined in Database.Persist.Types.Base | |
An EntityDef represents the information that persistent knows about an Entity. It uses this information to generate the Haskell datatype, the SQL migrations, and other relevant conversions.
Instances
| Read EntityDef | |
| Show EntityDef | |
| Eq EntityDef | |
| Ord EntityDef | |
| Lift EntityDef | |
data EntityIdDef #
The definition for the entity's primary key ID.
Since: persistent-2.13.0.0
Constructors
| EntityIdField !FieldDef | The entity has a single key column, and it is a surrogate key - that is, you can't go from Since: persistent-2.13.0.0 |
| EntityIdNaturalKey !CompositeDef | The entity has a natural key. This means you can write A natural key can have one or more columns. Since: persistent-2.13.0.0 |
Instances
Attributes that may be attached to fields that can affect migrations and serialization in backend-specific ways.
While we endeavor to, we can't forsee all use cases for all backends, and so FieldAttr is extensible through its constructor FieldAttrOther.
Since: persistent-2.11.0.0
Constructors
| FieldAttrMaybe | The Example: User name Text Maybe |
| FieldAttrNullable | This indicates that the column is nullable, but should not have a data What = NoWhat | Hello Text instance PersistField What where fromPersistValue PersistNull = pure NoWhat fromPersistValue pv = Hello $ fromPersistValue pv instance PersistFieldSql What where sqlType _ = SqlString User what What nullable |
| FieldAttrMigrationOnly | This tag means that the column will not be present on the Haskell code, but will not be removed from the database. Useful to deprecate fields in phases. You should set the column to be nullable in the database. Otherwise, inserts won't have values. User oldName Text MigrationOnly newName Text |
| FieldAttrSafeToRemove | A Useful after you've used User oldName Text SafeToRemove newName Text |
| FieldAttrNoreference | This attribute indicates that we should create a foreign key reference from a column. By default, This is useful if you want to use the explicit foreign key syntax. Post title Text Comment postId PostId noreference Foreign Post fk_comment_post postId |
| FieldAttrReference Text | This is set to specify precisely the database table the column refers to. Post title Text Comment postId PostId references="post" You should not need this - |
| FieldAttrConstraint Text | Specify a name for the constraint on the foreign key reference for this table. Post title Text Comment postId PostId constraint="my_cool_constraint_name" |
| FieldAttrDefault Text | Specify the default value for a column. User createdAt UTCTime default="NOW()" Note that a |
| FieldAttrSqltype Text | Specify a custom SQL type for the column. Generally, you should define a custom datatype with a custom User uuid Text sqltype=UUID |
| FieldAttrMaxlen Integer | Set a maximum length for a column. Useful for VARCHAR and indexes. User name Text maxlen=200 UniqueName name |
| FieldAttrSql Text | Specify the database name of the column. User blarghle Int sql="b_l_a_r_g_h_l_e" Useful for performing phased migrations, where one column is renamed to another column over time. |
| FieldAttrOther Text | A grab bag of random attributes that were unrecognized by the parser. |
Instances
| Read FieldAttr | |
| Show FieldAttr | |
| Eq FieldAttr | |
| Ord FieldAttr | |
| Lift FieldAttr | |
A FieldType describes a field parsed from the QuasiQuoter and is used to determine the Haskell type in the generated code.
name Text parses into FTTypeCon Nothing Text
name T.Text parses into FTTypeCon (Just T Text)
name (Jsonb User) parses into:
FTApp (FTTypeCon Nothing Jsonb) (FTTypeCon Nothing User)
Constructors
| FTTypeCon (Maybe Text) Text | Optional module and name. |
| FTLit FieldTypeLit | |
| FTTypePromoted Text | |
| FTApp FieldType FieldType | |
| FTList FieldType |
Instances
| Read FieldType | |
| Show FieldType | |
| Eq FieldType | |
| Ord FieldType | |
| Lift FieldType | |
data ReferenceDef #
There are 3 kinds of references 1) composite (to fields that exist in the record) 2) single field 3) embedded
Constructors
| NoReference | |
| ForeignRef !EntityNameHS | A ForeignRef has a late binding to the EntityDef it references via name and has the Haskell type of the foreign key in the form of FieldType |
| EmbedRef EntityNameHS | |
| SelfReference | A SelfReference stops an immediate cycle which causes non-termination at compile-time (issue #311). |
Instances
| Read ReferenceDef | |
Defined in Database.Persist.Types.Base Methods readsPrec :: Int -> ReadS ReferenceDef # readList :: ReadS [ReferenceDef] # | |
| Show ReferenceDef | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> ReferenceDef -> ShowS # show :: ReferenceDef -> String # showList :: [ReferenceDef] -> ShowS # | |
| Eq ReferenceDef | |
Defined in Database.Persist.Types.Base | |
| Ord ReferenceDef | |
Defined in Database.Persist.Types.Base Methods compare :: ReferenceDef -> ReferenceDef -> Ordering # (<) :: ReferenceDef -> ReferenceDef -> Bool # (<=) :: ReferenceDef -> ReferenceDef -> Bool # (>) :: ReferenceDef -> ReferenceDef -> Bool # (>=) :: ReferenceDef -> ReferenceDef -> Bool # max :: ReferenceDef -> ReferenceDef -> ReferenceDef # min :: ReferenceDef -> ReferenceDef -> ReferenceDef # | |
| Lift ReferenceDef | |
Defined in Database.Persist.Types.Base Methods lift :: Quote m => ReferenceDef -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => ReferenceDef -> Code m ReferenceDef # | |
data EmbedEntityDef #
An EmbedEntityDef is the same as an EntityDef But it is only used for fieldReference so it only has data needed for embedding
Constructors
| EmbedEntityDef | |
Fields | |
Instances
data EmbedFieldDef #
An EmbedFieldDef is the same as a FieldDef But it is only used for embeddedFields so it only has data needed for embedding
Constructors
| EmbedFieldDef | |
Fields
| |
Instances
Type for storing the Uniqueness constraint in the Schema. Assume you have the following schema with a uniqueness constraint:
Person name String age Int UniqueAge age
This will be represented as:
UniqueDef { uniqueHaskell = ConstraintNameHS (packPTH UniqueAge) , uniqueDBName = ConstraintNameDB (packPTH "unique_age") , uniqueFields = [(FieldNameHS (packPTH "age"), FieldNameDB (packPTH "age"))] , uniqueAttrs = [] } Constructors
| UniqueDef | |
Fields
| |
Instances
| Read UniqueDef | |
| Show UniqueDef | |
| Eq UniqueDef | |
| Ord UniqueDef | |
| Lift UniqueDef | |
data CompositeDef #
Constructors
| CompositeDef | |
Fields
| |
Instances
| Read CompositeDef | |
Defined in Database.Persist.Types.Base Methods readsPrec :: Int -> ReadS CompositeDef # readList :: ReadS [CompositeDef] # | |
| Show CompositeDef | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> CompositeDef -> ShowS # show :: CompositeDef -> String # showList :: [CompositeDef] -> ShowS # | |
| Eq CompositeDef | |
Defined in Database.Persist.Types.Base | |
| Ord CompositeDef | |
Defined in Database.Persist.Types.Base Methods compare :: CompositeDef -> CompositeDef -> Ordering # (<) :: CompositeDef -> CompositeDef -> Bool # (<=) :: CompositeDef -> CompositeDef -> Bool # (>) :: CompositeDef -> CompositeDef -> Bool # (>=) :: CompositeDef -> CompositeDef -> Bool # max :: CompositeDef -> CompositeDef -> CompositeDef # min :: CompositeDef -> CompositeDef -> CompositeDef # | |
| Lift CompositeDef | |
Defined in Database.Persist.Types.Base Methods lift :: Quote m => CompositeDef -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => CompositeDef -> Code m CompositeDef # | |
type ForeignFieldDef = (FieldNameHS, FieldNameDB) #
Used instead of FieldDef to generate a smaller amount of code
data ForeignDef #
Constructors
| ForeignDef | |
Fields
| |
Instances
| Read ForeignDef | |
Defined in Database.Persist.Types.Base Methods readsPrec :: Int -> ReadS ForeignDef # readList :: ReadS [ForeignDef] # readPrec :: ReadPrec ForeignDef # readListPrec :: ReadPrec [ForeignDef] # | |
| Show ForeignDef | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> ForeignDef -> ShowS # show :: ForeignDef -> String # showList :: [ForeignDef] -> ShowS # | |
| Eq ForeignDef | |
Defined in Database.Persist.Types.Base | |
| Ord ForeignDef | |
Defined in Database.Persist.Types.Base Methods compare :: ForeignDef -> ForeignDef -> Ordering # (<) :: ForeignDef -> ForeignDef -> Bool # (<=) :: ForeignDef -> ForeignDef -> Bool # (>) :: ForeignDef -> ForeignDef -> Bool # (>=) :: ForeignDef -> ForeignDef -> Bool # max :: ForeignDef -> ForeignDef -> ForeignDef # min :: ForeignDef -> ForeignDef -> ForeignDef # | |
| Lift ForeignDef | |
Defined in Database.Persist.Types.Base Methods lift :: Quote m => ForeignDef -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => ForeignDef -> Code m ForeignDef # | |
data FieldCascade #
This datatype describes how a foreign reference field cascades deletes or updates.
This type is used in both parsing the model definitions and performing migrations. A Nothing in either of the field values means that the user has not specified a CascadeAction. An unspecified CascadeAction is defaulted to Restrict when doing migrations.
Since: persistent-2.11.0
Constructors
| FieldCascade | |
Fields
| |
Instances
| Read FieldCascade | |
Defined in Database.Persist.Types.Base Methods readsPrec :: Int -> ReadS FieldCascade # readList :: ReadS [FieldCascade] # | |
| Show FieldCascade | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> FieldCascade -> ShowS # show :: FieldCascade -> String # showList :: [FieldCascade] -> ShowS # | |
| Eq FieldCascade | |
Defined in Database.Persist.Types.Base | |
| Ord FieldCascade | |
Defined in Database.Persist.Types.Base Methods compare :: FieldCascade -> FieldCascade -> Ordering # (<) :: FieldCascade -> FieldCascade -> Bool # (<=) :: FieldCascade -> FieldCascade -> Bool # (>) :: FieldCascade -> FieldCascade -> Bool # (>=) :: FieldCascade -> FieldCascade -> Bool # max :: FieldCascade -> FieldCascade -> FieldCascade # min :: FieldCascade -> FieldCascade -> FieldCascade # | |
| Lift FieldCascade | |
Defined in Database.Persist.Types.Base Methods lift :: Quote m => FieldCascade -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => FieldCascade -> Code m FieldCascade # | |
data CascadeAction #
An action that might happen on a deletion or update on a foreign key change.
Since: persistent-2.11.0
Constructors
| Cascade | |
| Restrict | |
| SetNull | |
| SetDefault |
Instances
data PersistException #
Constructors
| PersistError Text | Generic Exception |
| PersistMarshalError Text | |
| PersistInvalidField Text | |
| PersistForeignConstraintUnmet Text | |
| PersistMongoDBError Text | |
| PersistMongoDBUnsupported Text |
Instances
| Exception PersistException | |
Defined in Database.Persist.Types.Base Methods toException :: PersistException -> SomeException # | |
| Show PersistException | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> PersistException -> ShowS # show :: PersistException -> String # showList :: [PersistException] -> ShowS # | |
A SQL data type. Naming attempts to reflect the underlying Haskell datatypes, eg SqlString instead of SqlVarchar. Different SQL databases may have different translations for these types.
Constructors
| SqlString | |
| SqlInt32 | |
| SqlInt64 | |
| SqlReal | |
| SqlNumeric Word32 Word32 | |
| SqlBool | |
| SqlDay | |
| SqlTime | |
| SqlDayTime | Always uses UTC timezone |
| SqlBlob | |
| SqlOther Text | a backend-specific name |
data PersistFilter #
Instances
| Read PersistFilter | |
Defined in Database.Persist.Types.Base Methods readsPrec :: Int -> ReadS PersistFilter # readList :: ReadS [PersistFilter] # | |
| Show PersistFilter | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> PersistFilter -> ShowS # show :: PersistFilter -> String # showList :: [PersistFilter] -> ShowS # | |
| Lift PersistFilter | |
Defined in Database.Persist.Types.Base Methods lift :: Quote m => PersistFilter -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => PersistFilter -> Code m PersistFilter # | |
data UpdateException #
Constructors
| KeyNotFound String | |
| UpsertError String |
Instances
| Exception UpdateException | |
Defined in Database.Persist.Types.Base Methods toException :: UpdateException -> SomeException # | |
| Show UpdateException | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> UpdateException -> ShowS # show :: UpdateException -> String # showList :: [UpdateException] -> ShowS # | |
data PersistUpdate #
Instances
| Read PersistUpdate | |
Defined in Database.Persist.Types.Base Methods readsPrec :: Int -> ReadS PersistUpdate # readList :: ReadS [PersistUpdate] # | |
| Show PersistUpdate | |
Defined in Database.Persist.Types.Base Methods showsPrec :: Int -> PersistUpdate -> ShowS # show :: PersistUpdate -> String # showList :: [PersistUpdate] -> ShowS # | |
| Lift PersistUpdate | |
Defined in Database.Persist.Types.Base Methods lift :: Quote m => PersistUpdate -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => PersistUpdate -> Code m PersistUpdate # | |
A FieldDef represents the inormation that persistent knows about a field of a datatype. This includes information used to parse the field out of the database and what the field corresponds to.
Constructors
| FieldDef | |
Fields
| |
data IsolationLevel #
Please refer to the documentation for the database in question for a full overview of the semantics of the varying isloation levels
Constructors
| ReadUncommitted | |
| ReadCommitted | |
| RepeatableRead | |
| Serializable |
Instances
data PersistValue #
A raw value which can be stored in any backend and can be marshalled to and from a PersistField.
Constructors
| PersistText Text | |
| PersistByteString ByteString | |
| PersistInt64 Int64 | |
| PersistDouble Double | |
| PersistRational Rational | |
| PersistBool Bool | |
| PersistDay Day | |
| PersistTimeOfDay TimeOfDay | |
| PersistUTCTime UTCTime | |
| PersistNull | |
| PersistList [PersistValue] | |
| PersistMap [(Text, PersistValue)] | |
| PersistObjectId ByteString | Intended especially for MongoDB backend |
| PersistArray [PersistValue] | Intended especially for PostgreSQL backend for text arrays |
| PersistLiteral_ LiteralType ByteString | This constructor is used to specify some raw literal value for the backend. The Since: persistent-2.12.0.0 |
Bundled Patterns
| pattern PersistDbSpecific :: ByteString -> PersistValue | This pattern synonym used to be a data constructor for the If you use this, it will overlap a patern match on the 'PersistLiteral_, Since: persistent-2.12.0.0 |
| pattern PersistLiteralEscaped :: ByteString -> PersistValue | This pattern synonym used to be a data constructor on Since: persistent-2.12.0.0 |
| pattern PersistLiteral :: ByteString -> PersistValue | This pattern synonym used to be a data constructor on Since: persistent-2.12.0.0 |
Instances
data LiteralType #
A type that determines how a backend should handle the literal.
Since: persistent-2.12.0.0
Constructors
| Escaped | The accompanying value will be escaped before inserting into the database. This is the correct default choice to use. Since: persistent-2.12.0.0 |
| Unescaped | The accompanying value will not be escaped when inserting into the database. This is potentially dangerous - use this with care. Since: persistent-2.12.0.0 |
| DbSpecific | The Since: persistent-2.12.0.0 |
Instances
| Read LiteralType | |
Defined in Database.Persist.PersistValue Methods readsPrec :: Int -> ReadS LiteralType # readList :: ReadS [LiteralType] # readPrec :: ReadPrec LiteralType # readListPrec :: ReadPrec [LiteralType] # | |
| Show LiteralType | |
Defined in Database.Persist.PersistValue Methods showsPrec :: Int -> LiteralType -> ShowS # show :: LiteralType -> String # showList :: [LiteralType] -> ShowS # | |
| Eq LiteralType | |
Defined in Database.Persist.PersistValue | |
| Ord LiteralType | |
Defined in Database.Persist.PersistValue Methods compare :: LiteralType -> LiteralType -> Ordering # (<) :: LiteralType -> LiteralType -> Bool # (<=) :: LiteralType -> LiteralType -> Bool # (>) :: LiteralType -> LiteralType -> Bool # (>=) :: LiteralType -> LiteralType -> Bool # max :: LiteralType -> LiteralType -> LiteralType # min :: LiteralType -> LiteralType -> LiteralType # | |
class DatabaseName a where #
Convenience operations for working with '-NameDB' types.
Since: persistent-2.12.0.0
Methods
escapeWith :: (Text -> str) -> a -> str #
Instances
| DatabaseName ConstraintNameDB | Since: persistent-2.12.0.0 |
Defined in Database.Persist.Names Methods escapeWith :: (Text -> str) -> ConstraintNameDB -> str # | |
| DatabaseName EntityNameDB | |
Defined in Database.Persist.Names Methods escapeWith :: (Text -> str) -> EntityNameDB -> str # | |
| DatabaseName FieldNameDB | Since: persistent-2.12.0.0 |
Defined in Database.Persist.Names Methods escapeWith :: (Text -> str) -> FieldNameDB -> str # | |
newtype FieldNameDB #
A FieldNameDB represents the datastore-side name that persistent will use for a field.
Since: persistent-2.12.0.0
Constructors
| FieldNameDB | |
Fields | |
Instances
newtype FieldNameHS #
A FieldNameHS represents the Haskell-side name that persistent will use for a field.
Since: persistent-2.12.0.0
Constructors
| FieldNameHS | |
Fields | |
Instances
| Read FieldNameHS | |
Defined in Database.Persist.Names Methods readsPrec :: Int -> ReadS FieldNameHS # readList :: ReadS [FieldNameHS] # readPrec :: ReadPrec FieldNameHS # readListPrec :: ReadPrec [FieldNameHS] # | |
| Show FieldNameHS | |
Defined in Database.Persist.Names Methods showsPrec :: Int -> FieldNameHS -> ShowS # show :: FieldNameHS -> String # showList :: [FieldNameHS] -> ShowS # | |
| Eq FieldNameHS | |
Defined in Database.Persist.Names | |
| Ord FieldNameHS | |
Defined in Database.Persist.Names Methods compare :: FieldNameHS -> FieldNameHS -> Ordering # (<) :: FieldNameHS -> FieldNameHS -> Bool # (<=) :: FieldNameHS -> FieldNameHS -> Bool # (>) :: FieldNameHS -> FieldNameHS -> Bool # (>=) :: FieldNameHS -> FieldNameHS -> Bool # max :: FieldNameHS -> FieldNameHS -> FieldNameHS # min :: FieldNameHS -> FieldNameHS -> FieldNameHS # | |
| Lift FieldNameHS | |
Defined in Database.Persist.Names Methods lift :: Quote m => FieldNameHS -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => FieldNameHS -> Code m FieldNameHS # | |
newtype EntityNameHS #
An EntityNameHS represents the Haskell-side name that persistent will use for an entity.
Since: persistent-2.12.0.0
Constructors
| EntityNameHS | |
Fields | |
Instances
| Read EntityNameHS | |
Defined in Database.Persist.Names Methods readsPrec :: Int -> ReadS EntityNameHS # readList :: ReadS [EntityNameHS] # | |
| Show EntityNameHS | |
Defined in Database.Persist.Names Methods showsPrec :: Int -> EntityNameHS -> ShowS # show :: EntityNameHS -> String # showList :: [EntityNameHS] -> ShowS # | |
| Eq EntityNameHS | |
Defined in Database.Persist.Names | |
| Ord EntityNameHS | |
Defined in Database.Persist.Names Methods compare :: EntityNameHS -> EntityNameHS -> Ordering # (<) :: EntityNameHS -> EntityNameHS -> Bool # (<=) :: EntityNameHS -> EntityNameHS -> Bool # (>) :: EntityNameHS -> EntityNameHS -> Bool # (>=) :: EntityNameHS -> EntityNameHS -> Bool # max :: EntityNameHS -> EntityNameHS -> EntityNameHS # min :: EntityNameHS -> EntityNameHS -> EntityNameHS # | |
| Lift EntityNameHS | |
Defined in Database.Persist.Names Methods lift :: Quote m => EntityNameHS -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => EntityNameHS -> Code m EntityNameHS # | |
newtype EntityNameDB #
An EntityNameDB represents the datastore-side name that persistent will use for an entity.
Since: persistent-2.12.0.0
Constructors
| EntityNameDB | |
Fields | |
Instances
newtype ConstraintNameDB #
A ConstraintNameDB represents the datastore-side name that persistent will use for a constraint.
Since: persistent-2.12.0.0
Constructors
| ConstraintNameDB | |
Fields | |
Instances
newtype ConstraintNameHS #
An ConstraintNameHS represents the Haskell-side name that persistent will use for a constraint.
Since: persistent-2.12.0.0
Constructors
| ConstraintNameHS | |
Fields | |
Instances
type family PersistConfigPool c #
Instances
| type PersistConfigPool (Either c1 c2) | |
Defined in Database.Persist.Class.PersistConfig | |
type family PersistConfigBackend c :: (Type -> Type) -> Type -> Type #
Instances
| type PersistConfigBackend (Either c1 c2) | |
Defined in Database.Persist.Class.PersistConfig | |
class PersistConfig c where #
Represents a value containing all the configuration options for a specific backend. This abstraction makes it easier to write code that can easily swap backends.
Minimal complete definition
Associated Types
type PersistConfigBackend c :: (Type -> Type) -> Type -> Type #
type PersistConfigPool c #
Methods
loadConfig :: Value -> Parser c #
Load the config settings from a Value, most likely taken from a YAML config file.
Modify the config settings based on environment variables.
createPoolConfig :: c -> IO (PersistConfigPool c) #
Create a new connection pool based on the given config settings.
runPool :: MonadUnliftIO m => c -> PersistConfigBackend c m a -> PersistConfigPool c -> m a #
Run a database action by taking a connection from the pool.
Instances
| (PersistConfig c1, PersistConfig c2, PersistConfigPool c1 ~ PersistConfigPool c2, PersistConfigBackend c1 ~ PersistConfigBackend c2) => PersistConfig (Either c1 c2) | |
Defined in Database.Persist.Class.PersistConfig Associated Types type PersistConfigBackend (Either c1 c2) :: (Type -> Type) -> Type -> Type # type PersistConfigPool (Either c1 c2) # Methods loadConfig :: Value -> Parser (Either c1 c2) # applyEnv :: Either c1 c2 -> IO (Either c1 c2) # createPoolConfig :: Either c1 c2 -> IO (PersistConfigPool (Either c1 c2)) # runPool :: MonadUnliftIO m => Either c1 c2 -> PersistConfigBackend (Either c1 c2) m a -> PersistConfigPool (Either c1 c2) -> m a # | |