Skip to content

Commit 8814f5d

Browse files
authored
refact: fix docxs (#360)
1 parent 6664bab commit 8814f5d

File tree

3 files changed

+24
-23
lines changed

3 files changed

+24
-23
lines changed

README.md

Lines changed: 8 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,7 @@
2020
<a href="#Documentation">Documentation</a> •
2121
<a href="#Quick-Start-with-Docker">Quick-Start with Docker</a> •
2222
<a href="#Performance">Performance</a> •
23+
<a href="#Accuracy">Accuracy</a> •
2324
<a href="#License">License</a>
2425
</p>
2526

@@ -87,16 +88,17 @@ We compare the prediction performance of HyperPose with [OpenPose 1.6](https://g
8788
| OpenPifPaf (ResNet50) | 97.6 MB | 432 x 368 | **44.16 FPS** | 14.5 FPS (OpenPifPaf) |
8889

8990
## Accuracy
91+
9092
We evaluate accuracy of pose estimation models developed by hyperpose (mainly over Mscoco2017 dataset). the development environment is Ubuntu16.04, with 4 V100-DGXs and 24 Intel Xeon CPU. The training procedure takes 1~2 weeks using 1 V100-DGX for each model. (If you want to train from strach, loading the pretrained backbone weight is recommended.)
9193

9294
| HyperPose Configuration | DNN Size | Input Size | Evaluate Dataset | Accuracy-hyperpose (Iou=0.50:0.95) | Accuracy-original (Iou=0.50:0.95) |
9395
| -------------------- | ---------- | ------------- | ---------------- | --------------------- | ----------------------- |
94-
| Openpose (vgg19) | 199 MB | 432 x 368 | Mscoco2014(random 1160 images) | 57.0 map | 58.4 map |
95-
| LightweightOpenpose (dailated mobilenet) | 17.7 MB | 432 x 368 | Mscoco2017(all 5000 images) | 46.1 map | 42.8 map |
96-
| LightweightOpenpose (mobilenet-thin) | 17.4 MB | 432 x 368 | Mscoco2017(all 5000 images) | 44.2 map | 28.06 map (Mscoco2014) |
97-
| LightweightOpenpose (tinyvgg) | 23.6 MB | 432 x 368 | Mscoco2017(all 5000 images) | 47.3 map | - |
98-
| LightweightOpenpose (resnet50) | 42.7 MB | 432 x 368 | Mscoco2017(all 5000 images) | 48.2 map | - |
99-
| PoseProposal (resnet18) | 45.2 MB | 384 x 384 | MPII(all 2729 images) | 54.9 map (Pckh) | 72.8 map (Pckh)|
96+
| OpenPose (VGG19) | 199 MB | 432 x 368 | MSCOCO2014 (random 1160 images) | 57.0 map | 58.4 map |
97+
| LightweightOpenPose (Dilated MobileNet) | 17.7 MB | 432 x 368 | MSCOCO2017(all 5000 img.) | 46.1 map | 42.8 map |
98+
| LightweightOpenPose (MobileNet-Thin) | 17.4 MB | 432 x 368 | MSCOCO2017 (all 5000 img.) | 44.2 map | 28.06 map (MSCOCO2014) |
99+
| LightweightOpenPose (tiny VGG) | 23.6 MB | 432 x 368 | MSCOCO2017 (all 5000 img.) | 47.3 map | - |
100+
| LightweightOpenPose (ResNet50) | 42.7 MB | 432 x 368 | MSCOCO2017 (all 5000 img.) | 48.2 map | - |
101+
| PoseProposal (ResNet18) | 45.2 MB | 384 x 384 | MPII (all 2729 img.) | 54.9 map (PCKh) | 72.8 map (PCKh)|
100102

101103

102104
</a>

docs/markdown/install/prediction.md

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,7 @@
11
# C++ Prediction Library Installation
22

33
Note that C++ prediction library requires NVidia GPU acceleration.
4-
5-
Thought it is built to be platform-independent, the C++ library is mostly tested on Linux Platforms.
6-
So we recommend you to build it on Linux platforms.
4+
HyperPose is developed and frequently tested on Linux platforms. Hence, we recommend you to build HyperPose on Linux.
75

86
## Docker Environment Installation (RECOMMENDED)
97

@@ -40,14 +38,14 @@ docker run --rm --gpus all $(USER_DEF_NAME)
4038

4139
### Prerequisites
4240

43-
* C++ 17 Compiler. (g++7, clang++4.0, MSVC19.0 or newer)
41+
* C++ 17 Compiler. (g++7, clang++5.0, MSVC19.0 or newer)
4442
* CMake 3.5+
4543
* Third-Party
4644
* OpenCV3.2+. (**[OpenCV 4+](https://docs.opencv.org/trunk/d7/d9f/tutorial_linux_install.html) is highly recommended**)
4745
* [CUDA 10.2](https://developer.nvidia.com/cuda-downloads), [CuDNN 7.6.5](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html), [TensorRT 7.0](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html).
4846
* gFlags(for command-line tool/examples/tests)
4947

50-
> Other versions of the packages may also work but not tested.
48+
> Packages of other versions might also work but not tested.
5149
5250
> **About TensorRT installation**
5351
>

docs/markdown/performance/prediction.md

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -2,21 +2,22 @@
22

33
## Result
44

5-
| Method | Backbone Size | Network Resolution | Operator API / FPS | Stream API / FPS | Other Framework / FPS | Batch Size |
6-
| ------------------------ | ------------- | ------------------ | ------------------ | ---------------- | --------------------- | ---------- |
7-
| OpenPose COCO | 209.3MB | 656 x 368 | 19.78 | 27.32 | 8 (OpenPose) | 8 |
8-
| Tiny VGG + PAF | 34.7 MB | 384 x 256 | 66.62 | 124.925 | / | 8 |
9-
| MobileNet + PAF | 17.9 MB | 432 x 368 | 50.89 | 84.32 | / | 8 |
10-
| ResNet50 + PAF | 45.0 MB | 432 x 368 | 50.89 | 84.32 | 8.5 (TF-Pose) | 8 |
11-
| ResNet18 + Pose Proposal | 50.3 MB | 384 x 384 | 212.42 | 349.17 | / | 64 |
5+
6+
We compare the prediction performance of HyperPose with [OpenPose 1.6](https://github.com/CMU-Perceptual-Computing-Lab/openpose) and [TF-Pose](https://github.com/ildoonet/tf-pose-estimation).
7+
We implement the OpenPose algorithms with different configurations in HyperPose.
8+
9+
The test-bed has Ubuntu18.04, 1070Ti GPU, Intel i7 CPU (12 logic cores).
10+
11+
| HyperPose Configuration | DNN Size | Input Size | HyperPose | Baseline |
12+
| --------------- | ------------- | ------------------ | ------------------ | --------------------- |
13+
| OpenPose (VGG) | 209.3MB | 656 x 368 | **27.32 FPS** | 8 FPS (OpenPose) |
14+
| OpenPose (TinyVGG) | 34.7 MB | 384 x 256 | **124.925 FPS** | N/A |
15+
| OpenPose (MobileNet) | 17.9 MB | 432 x 368 | **84.32 FPS** | 8.5 FPS (TF-Pose) |
16+
| OpenPose (ResNet18) | 45.0 MB | 432 x 368 | **62.52 FPS** | N/A |
17+
| OpenPifPaf (ResNet50) | 97.6 MB | 97 x 129 | **178.6 FPS** | 35.3 |
1218

1319
> **Environment**: System@Ubuntu18.04, GPU@1070Ti, CPU@i7(12 logic cores).
1420
>
1521
> **Tested Video Source**: Crazy Updown Funk(resolution@640x360, frame_count@7458, source@[YouTube](https://www.youtube.com/watch?v=2DiQUX11YaY))
1622
1723
> OpenPose performance is not tested with batch processing as it seems not to be implemented. (see [here](https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/100))
18-
19-
## Suggestions
20-
21-
- PAF post processing is slow. Batch processing will not accelerate PAF and will bring little improvement in the speed.
22-
- And Pose Proposal post processing is fast(over 8k FPS in single core). So any optimization(e.g. batch processing) in DNN inference will be remarkable for the throughput of the pipeline. For example, using batch size 8 we got 164 FPS, using batch size 64 we got 349 FPS, and using batch size 128 we got 383 FPS.

0 commit comments

Comments
 (0)