-  
-   Notifications  You must be signed in to change notification settings 
- Fork 19.2k
Description
-  I have checked that this issue has not already been reported. 
-  I have confirmed this bug exists on the latest version of pandas. 
-  I have confirmed this bug exists on the master branch of pandas. 
Reproducible Example
import pandas as pd df = pd.DataFrame({"A": [2, 1, 2, 2], "B": [3, 3, 4, 4], "E": [['10'], ['20'], ['30'], ['40']]}) df["A"].cumsum() df["E"].cumsum() df.groupby("B")["A"].cumsum() df.groupby("B")["E"].cumsum()Issue Description
Inconsistency between behavior of cumsum() when applied directly, and when applied within groupby().
 When used directly on a column of a dataframe that contains lists, cumsum() progressively concatenates the lists.
 When used as part of groupby() on the same dataframe cumsum() throws "NotImplementedError: function is not implemented for this dtype: [how->cumsum,dtype->object]"
Expected Behavior
I'd expect cumsum() to progressively concatenate the lists of all rows within each group defined by groupby(), in a way similar to what it does with numeric values.
Installed Versions
INSTALLED VERSIONS
commit : 73c6825
 python : 3.8.2.final.0
 python-bits : 64
 OS : Linux
 OS-release : 4.15.0-147-generic
 Version : #151-Ubuntu SMP Fri Jun 18 19:21:19 UTC 2021
 machine : x86_64
 processor : x86_64
 byteorder : little
 LC_ALL : None
 LANG : en_US.UTF-8
 LOCALE : en_US.UTF-8
pandas : 1.3.3
 numpy : 1.19.2
 pytz : 2020.1
 dateutil : 2.8.1
 pip : 20.1.1
 setuptools : 46.1.3
 Cython : 0.29.21
 pytest : 6.2.2
 hypothesis : None
 sphinx : None
 blosc : None
 feather : None
 xlsxwriter : 1.2.9
 lxml.etree : 4.5.2
 html5lib : None
 pymysql : None
 psycopg2 : None
 jinja2 : 2.11.2
 IPython : 7.16.1
 pandas_datareader: None
 bs4 : 4.9.1
 bottleneck : 1.3.2
 fsspec : None
 fastparquet : None
 gcsfs : None
 matplotlib : 3.2.2
 numexpr : 2.7.1
 odfpy : None
 openpyxl : None
 pandas_gbq : None
 pyarrow : 0.16.0
 pyxlsb : None
 s3fs : None
 scipy : 1.5.0
 sqlalchemy : 1.3.18
 tables : 3.6.1
 tabulate : None
 xarray : None
 xlrd : 1.2.0
 xlwt : None
 numba : 0.53.1