-  
-   Notifications  You must be signed in to change notification settings 
- Fork 19.2k
Description
-  I have checked that this issue has not already been reported. 
-  I have confirmed this bug exists on the latest version of pandas. 
-  (optional) I have confirmed this bug exists on the master branch of pandas. 
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd import io indata = io.StringIO("c\n10000000000") df = pd.read_csv(indata, header=0) print(df) indata.seek(0) df = pd.read_csv(indata, header=0, dtype={"c":int}) print(df)Problem description
The data gets truncated without pandas issuing any warning of any kind.
This causes data loss.
This is the actual ouput:
 c 0 10000000000 c 0 1410065408 Expected Output
 c 0 10000000000 c 0 10000000000 Output of pd.show_versions()
 INSTALLED VERSIONS
commit : db08276
 python : 3.8.5.final.0
 python-bits : 64
 OS : Windows
 OS-release : 10
 Version : 10.0.18362
 machine : AMD64
 processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
 byteorder : little
 LC_ALL : None
 LANG : None
 LOCALE : Italian_Italy.1252
pandas : 1.1.3
 numpy : 1.19.2
 pytz : 2020.1
 dateutil : 2.8.1
 pip : 20.2.4
 setuptools : 50.3.1.post20201107
 Cython : 0.29.21
 pytest : 6.1.1
 hypothesis : None
 sphinx : 3.2.1
 blosc : None
 feather : None
 xlsxwriter : 1.3.7
 lxml.etree : 4.6.1
 html5lib : 1.1
 pymysql : None
 psycopg2 : None
 jinja2 : 2.11.2
 IPython : 7.19.0
 pandas_datareader: None
 bs4 : 4.9.3
 bottleneck : 1.3.2
 fsspec : 0.8.3
 fastparquet : None
 gcsfs : None
 matplotlib : 3.3.2
 numexpr : 2.7.1
 odfpy : None
 openpyxl : 3.0.5
 pandas_gbq : None
 pyarrow : None
 pytables : None
 pyxlsb : None
 s3fs : None
 scipy : 1.5.2
 sqlalchemy : 1.3.20
 tables : 3.6.1
 tabulate : None
 xarray : None
 xlrd : 1.2.0
 xlwt : 1.3.0
 numba : 0.51.2