@@ -187,7 +187,7 @@ def iloc(self) -> _iLocIndexer:
187187 --------
188188 >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
189189 ... {'a': 100, 'b': 200, 'c': 300, 'd': 400},
190- ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
190+ ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000}]
191191 >>> df = pd.DataFrame(mydict)
192192 >>> df
193193 a b c d
@@ -328,16 +328,16 @@ def loc(self) -> _LocIndexer:
328328 DataFrame.at : Access a single value for a row/column label pair.
329329 DataFrame.iloc : Access group of rows and columns by integer position(s).
330330 DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
331- Series/DataFrame.
331+ Series/DataFrame.
332332 Series.loc : Access group of values using labels.
333333
334334 Examples
335335 --------
336336 **Getting values**
337337
338338 >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
339- ... index=['cobra', 'viper', 'sidewinder'],
340- ... columns=['max_speed', 'shield'])
339+ ... index=['cobra', 'viper', 'sidewinder'],
340+ ... columns=['max_speed', 'shield'])
341341 >>> df
342342 max_speed shield
343343 cobra 1 2
@@ -380,8 +380,8 @@ def loc(self) -> _LocIndexer:
380380 Alignable boolean Series:
381381
382382 >>> df.loc[pd.Series([False, True, False],
383- ... index=['viper', 'sidewinder', 'cobra'])]
384- max_speed shield
383+ ... index=['viper', 'sidewinder', 'cobra'])]
384+ max_speed shield
385385 sidewinder 7 8
386386
387387 Index (same behavior as ``df.reindex``)
@@ -407,7 +407,7 @@ def loc(self) -> _LocIndexer:
407407 Multiple conditional using ``&`` that returns a boolean Series
408408
409409 >>> df.loc[(df['max_speed'] > 1) & (df['shield'] < 8)]
410- max_speed shield
410+ max_speed shield
411411 viper 4 5
412412
413413 Multiple conditional using ``|`` that returns a boolean Series
@@ -496,7 +496,7 @@ def loc(self) -> _LocIndexer:
496496 Another example using integers for the index
497497
498498 >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
499- ... index=[7, 8, 9], columns=['max_speed', 'shield'])
499+ ... index=[7, 8, 9], columns=['max_speed', 'shield'])
500500 >>> df
501501 max_speed shield
502502 7 1 2
@@ -517,13 +517,13 @@ def loc(self) -> _LocIndexer:
517517 A number of examples using a DataFrame with a MultiIndex
518518
519519 >>> tuples = [
520- ... ('cobra', 'mark i'), ('cobra', 'mark ii'),
521- ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
522- ... ('viper', 'mark ii'), ('viper', 'mark iii')
520+ ... ('cobra', 'mark i'), ('cobra', 'mark ii'),
521+ ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
522+ ... ('viper', 'mark ii'), ('viper', 'mark iii')
523523 ... ]
524524 >>> index = pd.MultiIndex.from_tuples(tuples)
525525 >>> values = [[12, 2], [0, 4], [10, 20],
526- ... [1, 4], [7, 1], [16, 36]]
526+ ... [1, 4], [7, 1], [16, 36]]
527527 >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
528528 >>> df
529529 max_speed shield
0 commit comments