@@ -50,9 +50,8 @@ Attributes and the raw ndarray(s)
5050
5151pandas objects have a number of attributes enabling you to access the metadata
5252
53- * **shape **: gives the axis dimensions of the object, consistent with ndarray
54- * Axis labels
55-
53+ * **shape **: gives the axis dimensions of the object, consistent with ndarray
54+ * Axis labels
5655 * **Series **: *index * (only axis)
5756 * **DataFrame **: *index * (rows) and *columns *
5857 * **Panel **: *items *, *major_axis *, and *minor_axis *
@@ -131,9 +130,9 @@ Flexible binary operations
131130With binary operations between pandas data structures, there are two key points
132131of interest:
133132
134- * Broadcasting behavior between higher- (e.g. DataFrame) and
135- lower-dimensional (e.g. Series) objects.
136- * Missing data in computations.
133+ * Broadcasting behavior between higher- (e.g. DataFrame) and
134+ lower-dimensional (e.g. Series) objects.
135+ * Missing data in computations.
137136
138137We will demonstrate how to manage these issues independently, though they can
139138be handled simultaneously.
@@ -462,10 +461,10 @@ produce an object of the same size. Generally speaking, these methods take an
462461**axis ** argument, just like *ndarray.{sum, std, ...} *, but the axis can be
463462specified by name or integer:
464463
465- - **Series **: no axis argument needed
466- - **DataFrame **: "index" (axis=0, default), "columns" (axis=1)
467- - **Panel **: "items" (axis=0), "major" (axis=1, default), "minor"
468- (axis=2)
464+ * **Series **: no axis argument needed
465+ * **DataFrame **: "index" (axis=0, default), "columns" (axis=1)
466+ * **Panel **: "items" (axis=0), "major" (axis=1, default), "minor"
467+ (axis=2)
469468
470469For example:
471470
@@ -1187,11 +1186,11 @@ It is used to implement nearly all other features relying on label-alignment
11871186functionality. To *reindex * means to conform the data to match a given set of
11881187labels along a particular axis. This accomplishes several things:
11891188
1190- * Reorders the existing data to match a new set of labels
1191- * Inserts missing value (NA) markers in label locations where no data for
1192- that label existed
1193- * If specified, **fill ** data for missing labels using logic (highly relevant
1194- to working with time series data)
1189+ * Reorders the existing data to match a new set of labels
1190+ * Inserts missing value (NA) markers in label locations where no data for
1191+ that label existed
1192+ * If specified, **fill ** data for missing labels using logic (highly relevant
1193+ to working with time series data)
11951194
11961195Here is a simple example:
11971196
@@ -1911,10 +1910,10 @@ the axis indexes, since they are immutable) and returns a new object. Note that
19111910**it is seldom necessary to copy objects **. For example, there are only a
19121911handful of ways to alter a DataFrame *in-place *:
19131912
1914- * Inserting, deleting, or modifying a column.
1915- * Assigning to the ``index `` or ``columns `` attributes.
1916- * For homogeneous data, directly modifying the values via the ``values ``
1917- attribute or advanced indexing.
1913+ * Inserting, deleting, or modifying a column.
1914+ * Assigning to the ``index `` or ``columns `` attributes.
1915+ * For homogeneous data, directly modifying the values via the ``values ``
1916+ attribute or advanced indexing.
19181917
19191918To be clear, no pandas method has the side effect of modifying your data;
19201919almost every method returns a new object, leaving the original object
@@ -2112,22 +2111,22 @@ Because the data was transposed the original inference stored all columns as obj
21122111 The following functions are available for one dimensional object arrays or scalars to perform
21132112hard conversion of objects to a specified type:
21142113
2115- - :meth: `~pandas.to_numeric ` (conversion to numeric dtypes)
2114+ * :meth: `~pandas.to_numeric ` (conversion to numeric dtypes)
21162115
21172116 .. ipython :: python
21182117
21192118 m = [' 1.1' , 2 , 3 ]
21202119 pd.to_numeric(m)
21212120
2122- - :meth: `~pandas.to_datetime ` (conversion to datetime objects)
2121+ * :meth: `~pandas.to_datetime ` (conversion to datetime objects)
21232122
21242123 .. ipython :: python
21252124
21262125 import datetime
21272126 m = [' 2016-07-09' , datetime.datetime(2016 , 3 , 2 )]
21282127 pd.to_datetime(m)
21292128
2130- - :meth: `~pandas.to_timedelta ` (conversion to timedelta objects)
2129+ * :meth: `~pandas.to_timedelta ` (conversion to timedelta objects)
21312130
21322131 .. ipython :: python
21332132
0 commit comments