|  | 
|  | 1 | +""" | 
|  | 2 | +For compatibility with numpy libraries, pandas functions or | 
|  | 3 | +methods have to accept '*args' and '**kwargs' parameters to | 
|  | 4 | +accommodate numpy arguments that are not actually used or | 
|  | 5 | +respected in the pandas implementation. | 
|  | 6 | +
 | 
|  | 7 | +To ensure that users do not abuse these parameters, validation | 
|  | 8 | +is performed in 'validators.py' to make sure that any extra | 
|  | 9 | +parameters passed correspond ONLY to those in the numpy signature. | 
|  | 10 | +Part of that validation includes whether or not the user attempted | 
|  | 11 | +to pass in non-default values for these extraneous parameters. As we | 
|  | 12 | +want to discourage users from relying on these parameters when calling | 
|  | 13 | +the pandas implementation, we want them only to pass in the default values | 
|  | 14 | +for these parameters. | 
|  | 15 | +
 | 
|  | 16 | +This module provides a set of commonly used default arguments for functions | 
|  | 17 | +and methods that are spread throughout the codebase. This module will make it | 
|  | 18 | +easier to adjust to future upstream changes in the analogous numpy signatures. | 
|  | 19 | +""" | 
|  | 20 | + | 
|  | 21 | +from numpy import ndarray | 
|  | 22 | +from pandas.util.validators import (validate_args, validate_kwargs, | 
|  | 23 | + validate_args_and_kwargs) | 
|  | 24 | +from pandas.core.common import is_integer | 
|  | 25 | +from pandas.compat import OrderedDict | 
|  | 26 | + | 
|  | 27 | + | 
|  | 28 | +class CompatValidator(object): | 
|  | 29 | + def __init__(self, defaults, fname=None, method=None, | 
|  | 30 | + max_fname_arg_count=None): | 
|  | 31 | + self.fname = fname | 
|  | 32 | + self.method = method | 
|  | 33 | + self.defaults = defaults | 
|  | 34 | + self.max_fname_arg_count = max_fname_arg_count | 
|  | 35 | + | 
|  | 36 | + def __call__(self, args, kwargs, fname=None, | 
|  | 37 | + max_fname_arg_count=None, method=None): | 
|  | 38 | + fname = self.fname if fname is None else fname | 
|  | 39 | + max_fname_arg_count = (self.max_fname_arg_count if | 
|  | 40 | + max_fname_arg_count is None | 
|  | 41 | + else max_fname_arg_count) | 
|  | 42 | + method = self.method if method is None else method | 
|  | 43 | + | 
|  | 44 | + if method == 'args': | 
|  | 45 | + validate_args(fname, args, max_fname_arg_count, self.defaults) | 
|  | 46 | + elif method == 'kwargs': | 
|  | 47 | + validate_kwargs(fname, kwargs, self.defaults) | 
|  | 48 | + elif method == 'both': | 
|  | 49 | + validate_args_and_kwargs(fname, args, kwargs, | 
|  | 50 | + max_fname_arg_count, | 
|  | 51 | + self.defaults) | 
|  | 52 | + else: | 
|  | 53 | + raise ValueError("invalid validation method " | 
|  | 54 | + "'{method}'".format(method=method)) | 
|  | 55 | + | 
|  | 56 | +ARGMINMAX_DEFAULTS = dict(out=None) | 
|  | 57 | +validate_argmin = CompatValidator(ARGMINMAX_DEFAULTS, fname='argmin', | 
|  | 58 | + method='both', max_fname_arg_count=1) | 
|  | 59 | +validate_argmax = CompatValidator(ARGMINMAX_DEFAULTS, fname='argmax', | 
|  | 60 | + method='both', max_fname_arg_count=1) | 
|  | 61 | + | 
|  | 62 | + | 
|  | 63 | +def process_skipna(skipna, args): | 
|  | 64 | + if isinstance(skipna, ndarray) or skipna is None: | 
|  | 65 | + args = (skipna,) + args | 
|  | 66 | + skipna = True | 
|  | 67 | + | 
|  | 68 | + return skipna, args | 
|  | 69 | + | 
|  | 70 | + | 
|  | 71 | +def validate_argmin_with_skipna(skipna, args, kwargs): | 
|  | 72 | + """ | 
|  | 73 | + If 'Series.argmin' is called via the 'numpy' library, | 
|  | 74 | + the third parameter in its signature is 'out', which | 
|  | 75 | + takes either an ndarray or 'None', so check if the | 
|  | 76 | + 'skipna' parameter is either an instance of ndarray or | 
|  | 77 | + is None, since 'skipna' itself should be a boolean | 
|  | 78 | + """ | 
|  | 79 | + | 
|  | 80 | + skipna, args = process_skipna(skipna, args) | 
|  | 81 | + validate_argmin(args, kwargs) | 
|  | 82 | + return skipna | 
|  | 83 | + | 
|  | 84 | + | 
|  | 85 | +def validate_argmax_with_skipna(skipna, args, kwargs): | 
|  | 86 | + """ | 
|  | 87 | + If 'Series.argmax' is called via the 'numpy' library, | 
|  | 88 | + the third parameter in its signature is 'out', which | 
|  | 89 | + takes either an ndarray or 'None', so check if the | 
|  | 90 | + 'skipna' parameter is either an instance of ndarray or | 
|  | 91 | + is None, since 'skipna' itself should be a boolean | 
|  | 92 | + """ | 
|  | 93 | + | 
|  | 94 | + skipna, args = process_skipna(skipna, args) | 
|  | 95 | + validate_argmax(args, kwargs) | 
|  | 96 | + return skipna | 
|  | 97 | + | 
|  | 98 | +ARGSORT_DEFAULTS = OrderedDict() | 
|  | 99 | +ARGSORT_DEFAULTS['axis'] = -1 | 
|  | 100 | +ARGSORT_DEFAULTS['kind'] = 'quicksort' | 
|  | 101 | +ARGSORT_DEFAULTS['order'] = None | 
|  | 102 | +validate_argsort = CompatValidator(ARGSORT_DEFAULTS, fname='argsort', | 
|  | 103 | + max_fname_arg_count=0, method='both') | 
|  | 104 | + | 
|  | 105 | + | 
|  | 106 | +def validate_argsort_with_ascending(ascending, args, kwargs): | 
|  | 107 | + """ | 
|  | 108 | + If 'Categorical.argsort' is called via the 'numpy' library, the | 
|  | 109 | + first parameter in its signature is 'axis', which takes either | 
|  | 110 | + an integer or 'None', so check if the 'ascending' parameter has | 
|  | 111 | + either integer type or is None, since 'ascending' itself should | 
|  | 112 | + be a boolean | 
|  | 113 | + """ | 
|  | 114 | + | 
|  | 115 | + if is_integer(ascending) or ascending is None: | 
|  | 116 | + args = (ascending,) + args | 
|  | 117 | + ascending = True | 
|  | 118 | + | 
|  | 119 | + validate_argsort(args, kwargs, max_fname_arg_count=1) | 
|  | 120 | + return ascending | 
|  | 121 | + | 
|  | 122 | +CLIP_DEFAULTS = dict(out=None) | 
|  | 123 | +validate_clip = CompatValidator(CLIP_DEFAULTS, fname='clip', | 
|  | 124 | + method='both', max_fname_arg_count=3) | 
|  | 125 | + | 
|  | 126 | + | 
|  | 127 | +def validate_clip_with_axis(axis, args, kwargs): | 
|  | 128 | + """ | 
|  | 129 | + If 'NDFrame.clip' is called via the numpy library, the third | 
|  | 130 | + parameter in its signature is 'out', which can takes an ndarray, | 
|  | 131 | + so check if the 'axis' parameter is an instance of ndarray, since | 
|  | 132 | + 'axis' itself should either be an integer or None | 
|  | 133 | + """ | 
|  | 134 | + | 
|  | 135 | + if isinstance(axis, ndarray): | 
|  | 136 | + args = (axis,) + args | 
|  | 137 | + axis = None | 
|  | 138 | + | 
|  | 139 | + validate_clip(args, kwargs) | 
|  | 140 | + return axis | 
|  | 141 | + | 
|  | 142 | +COMPRESS_DEFAULTS = OrderedDict() | 
|  | 143 | +COMPRESS_DEFAULTS['axis'] = None | 
|  | 144 | +COMPRESS_DEFAULTS['out'] = None | 
|  | 145 | +validate_compress = CompatValidator(COMPRESS_DEFAULTS, fname='compress', | 
|  | 146 | + method='both', max_fname_arg_count=1) | 
|  | 147 | + | 
|  | 148 | +CUM_FUNC_DEFAULTS = OrderedDict() | 
|  | 149 | +CUM_FUNC_DEFAULTS['dtype'] = None | 
|  | 150 | +CUM_FUNC_DEFAULTS['out'] = None | 
|  | 151 | +validate_cum_func = CompatValidator(CUM_FUNC_DEFAULTS, method='kwargs') | 
|  | 152 | +validate_cumsum = CompatValidator(CUM_FUNC_DEFAULTS, fname='cumsum', | 
|  | 153 | + method='both', max_fname_arg_count=1) | 
|  | 154 | + | 
|  | 155 | +LOGICAL_FUNC_DEFAULTS = dict(out=None) | 
|  | 156 | +validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method='kwargs') | 
|  | 157 | + | 
|  | 158 | +MINMAX_DEFAULTS = dict(out=None) | 
|  | 159 | +validate_min = CompatValidator(MINMAX_DEFAULTS, fname='min', | 
|  | 160 | + method='both', max_fname_arg_count=1) | 
|  | 161 | +validate_max = CompatValidator(MINMAX_DEFAULTS, fname='max', | 
|  | 162 | + method='both', max_fname_arg_count=1) | 
|  | 163 | + | 
|  | 164 | +RESHAPE_DEFAULTS = dict(order='C') | 
|  | 165 | +validate_reshape = CompatValidator(RESHAPE_DEFAULTS, fname='reshape', | 
|  | 166 | + method='both', max_fname_arg_count=1) | 
|  | 167 | + | 
|  | 168 | +REPEAT_DEFAULTS = dict(axis=None) | 
|  | 169 | +validate_repeat = CompatValidator(REPEAT_DEFAULTS, fname='repeat', | 
|  | 170 | + method='both', max_fname_arg_count=1) | 
|  | 171 | + | 
|  | 172 | +ROUND_DEFAULTS = dict(out=None) | 
|  | 173 | +validate_round = CompatValidator(ROUND_DEFAULTS, fname='round', | 
|  | 174 | + method='both', max_fname_arg_count=1) | 
|  | 175 | + | 
|  | 176 | +SORT_DEFAULTS = OrderedDict() | 
|  | 177 | +SORT_DEFAULTS['axis'] = -1 | 
|  | 178 | +SORT_DEFAULTS['kind'] = 'quicksort' | 
|  | 179 | +SORT_DEFAULTS['order'] = None | 
|  | 180 | +validate_sort = CompatValidator(SORT_DEFAULTS, fname='sort', | 
|  | 181 | + method='kwargs') | 
|  | 182 | + | 
|  | 183 | +STAT_FUNC_DEFAULTS = OrderedDict() | 
|  | 184 | +STAT_FUNC_DEFAULTS['dtype'] = None | 
|  | 185 | +STAT_FUNC_DEFAULTS['out'] = None | 
|  | 186 | +validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, | 
|  | 187 | + method='kwargs') | 
|  | 188 | +validate_sum = CompatValidator(STAT_FUNC_DEFAULTS, fname='sort', | 
|  | 189 | + method='both', max_fname_arg_count=1) | 
|  | 190 | +validate_mean = CompatValidator(STAT_FUNC_DEFAULTS, fname='mean', | 
|  | 191 | + method='both', max_fname_arg_count=1) | 
|  | 192 | + | 
|  | 193 | +STAT_DDOF_FUNC_DEFAULTS = OrderedDict() | 
|  | 194 | +STAT_DDOF_FUNC_DEFAULTS['dtype'] = None | 
|  | 195 | +STAT_DDOF_FUNC_DEFAULTS['out'] = None | 
|  | 196 | +validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, | 
|  | 197 | + method='kwargs') | 
|  | 198 | + | 
|  | 199 | +# Currently, numpy (v1.11) has backwards compatibility checks | 
|  | 200 | +# in place so that this 'kwargs' parameter is technically | 
|  | 201 | +# unnecessary, but in the long-run, this will be needed. | 
|  | 202 | +SQUEEZE_DEFAULTS = dict(axis=None) | 
|  | 203 | +validate_squeeze = CompatValidator(SQUEEZE_DEFAULTS, fname='squeeze', | 
|  | 204 | + method='kwargs') | 
|  | 205 | + | 
|  | 206 | +TAKE_DEFAULTS = OrderedDict() | 
|  | 207 | +TAKE_DEFAULTS['out'] = None | 
|  | 208 | +TAKE_DEFAULTS['mode'] = 'raise' | 
|  | 209 | +validate_take = CompatValidator(TAKE_DEFAULTS, fname='take', | 
|  | 210 | + method='kwargs') | 
|  | 211 | + | 
|  | 212 | + | 
|  | 213 | +def validate_take_with_convert(convert, args, kwargs): | 
|  | 214 | + """ | 
|  | 215 | + If this function is called via the 'numpy' library, the third | 
|  | 216 | + parameter in its signature is 'axis', which takes either an | 
|  | 217 | + ndarray or 'None', so check if the 'convert' parameter is either | 
|  | 218 | + an instance of ndarray or is None | 
|  | 219 | + """ | 
|  | 220 | + | 
|  | 221 | + if isinstance(convert, ndarray) or convert is None: | 
|  | 222 | + args = (convert,) + args | 
|  | 223 | + convert = True | 
|  | 224 | + | 
|  | 225 | + validate_take(args, kwargs, max_fname_arg_count=3, method='both') | 
|  | 226 | + return convert | 
|  | 227 | + | 
|  | 228 | +TRANSPOSE_DEFAULTS = dict(axes=None) | 
|  | 229 | +validate_transpose = CompatValidator(TRANSPOSE_DEFAULTS, fname='transpose', | 
|  | 230 | + method='both', max_fname_arg_count=0) | 
|  | 231 | + | 
|  | 232 | + | 
|  | 233 | +def validate_transpose_for_generic(inst, kwargs): | 
|  | 234 | + try: | 
|  | 235 | + validate_transpose(tuple(), kwargs) | 
|  | 236 | + except ValueError as e: | 
|  | 237 | + klass = type(inst).__name__ | 
|  | 238 | + msg = str(e) | 
|  | 239 | + | 
|  | 240 | + # the Panel class actual relies on the 'axes' parameter if called | 
|  | 241 | + # via the 'numpy' library, so let's make sure the error is specific | 
|  | 242 | + # about saying that the parameter is not supported for particular | 
|  | 243 | + # implementations of 'transpose' | 
|  | 244 | + if "the 'axes' parameter is not supported" in msg: | 
|  | 245 | + msg += " for {klass} instances".format(klass=klass) | 
|  | 246 | + | 
|  | 247 | + raise ValueError(msg) | 
0 commit comments