|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# $$CatBoost\\ Feature\\ Importance\\ Tutorial$$" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "#### Sometimes it is very important to understand which feature made the greatest contribution to the final result. To do this, the CatBoost model has a get_feature_importance method." |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 3, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "import numpy as np\n", |
| 24 | + "from catboost import CatBoost, Pool, datasets\n", |
| 25 | + "from sklearn.model_selection import train_test_split" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "metadata": { |
| 31 | + "collapsed": true |
| 32 | + }, |
| 33 | + "source": [ |
| 34 | + "#### First, let's prepare the dataset:" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 4, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "train_df, _ = datasets.higgs()" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": 5, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "X, y = np.array(train_df.drop(0, axis=1))[:1000], np.array(train_df[0])[:1000]\n", |
| 53 | + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)\n", |
| 54 | + "train_pool = Pool(X_train, y_train)\n", |
| 55 | + "test_pool = Pool(X_test, y_test)" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "markdown", |
| 60 | + "metadata": {}, |
| 61 | + "source": [ |
| 62 | + "#### Let's train CatBoost:" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": 6, |
| 68 | + "metadata": { |
| 69 | + "scrolled": true |
| 70 | + }, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "cb = CatBoost({'iterations': 20, 'verbose': False, 'random_seed': 42, 'grow_policy': 'Lossguide'})\n", |
| 74 | + "cb.fit(train_pool);" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "#### Catboost provides several types of feature importances. One of them is PredictionDiff: A vector with contributions of each feature to the RawFormulaVal difference for each pair of objects." |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "#### Let's find two objects with incorrect labels on test data:" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": 16, |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "prediction = np.argmax(cb.predict(X_test, prediction_type='Probability'), axis=1)" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": 20, |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "wrong_prediction_idxs = np.arange(prediction.size)[y_test != prediction]\n", |
| 107 | + "test_pool_slice = test_pool.slice(wrong_prediction_idxs[:2])" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "#### Let's calculate PredictionDiff for these two objects:" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": 37, |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [ |
| 122 | + { |
| 123 | + "name": "stdout", |
| 124 | + "output_type": "stream", |
| 125 | + "text": [ |
| 126 | + "22: 0.590958854452\n", |
| 127 | + "25: 0.706977071538\n" |
| 128 | + ] |
| 129 | + } |
| 130 | + ], |
| 131 | + "source": [ |
| 132 | + "prediction_diff = cb.get_feature_importance(type='PredictionDiff', data=test_pool_slice)\n", |
| 133 | + "\n", |
| 134 | + "for feature_id, diff in np.ndenumerate(prediction_diff):\n", |
| 135 | + " if diff > 0.:\n", |
| 136 | + " print('{}: {}'.format(feature_id[0], diff))" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "#### As you can see, feature 25 is most important for getting the right prediction." |
| 144 | + ] |
| 145 | + } |
| 146 | + ], |
| 147 | + "metadata": { |
| 148 | + "kernelspec": { |
| 149 | + "display_name": "Python 2", |
| 150 | + "language": "python", |
| 151 | + "name": "python2" |
| 152 | + }, |
| 153 | + "language_info": { |
| 154 | + "codemirror_mode": { |
| 155 | + "name": "ipython", |
| 156 | + "version": 2 |
| 157 | + }, |
| 158 | + "file_extension": ".py", |
| 159 | + "mimetype": "text/x-python", |
| 160 | + "name": "python", |
| 161 | + "nbconvert_exporter": "python", |
| 162 | + "pygments_lexer": "ipython2", |
| 163 | + "version": "2.7.17" |
| 164 | + } |
| 165 | + }, |
| 166 | + "nbformat": 4, |
| 167 | + "nbformat_minor": 1 |
| 168 | +} |
0 commit comments