@@ -1332,6 +1332,19 @@ def add_baseline(
13321332 col_names  =  qb .column_names 
13331333 categorical_feature_names  =  qb .get_categorical_feature_names (train_features_df )
13341334
1335+  # Upload the validation set -- if there are issues, it's better to fail prior to model training 
1336+  if  val_df  is  not None :
1337+  self .add_dataframe (
1338+  df = val_df ,
1339+  task_type = task_type ,
1340+  project_id = project_id ,
1341+  class_names = class_names ,
1342+  label_column_name = label_column_name ,
1343+  commit_message = commit_message ,
1344+  feature_names = col_names ,
1345+  categorical_feature_names = categorical_feature_names ,
1346+  )
1347+ 
13351348 # Train model 
13361349 print (
13371350 f"Training model for approximately { round (0.0166  *  timeout , 2 )}  
@@ -1347,22 +1360,10 @@ def add_baseline(
13471360
13481361 # Create requirements file 
13491362 filename  =  "auto-requirements.txt" 
1350-  with  open ("auto-requirements.txt" , "w" ) as  f :
1363+  with  open (filename , "w" ) as  f :
13511364 f .write ("Automunge==8.30\n " )
13521365 f .write ("scikit-learn== 0.24.1" )
13531366
1354-  if  val_df  is  not None :
1355-  self .add_dataframe (
1356-  df = val_df ,
1357-  task_type = task_type ,
1358-  project_id = project_id ,
1359-  class_names = class_names ,
1360-  label_column_name = label_column_name ,
1361-  commit_message = commit_message ,
1362-  feature_names = col_names ,
1363-  categorical_feature_names = categorical_feature_names ,
1364-  )
1365- 
13661367 # Upload model 
13671368 model_info  =  self .add_model (
13681369 function = predict_proba ,
0 commit comments