|
| 1 | +import copy |
| 2 | +import math |
| 3 | + |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +import numpy as np |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | +import torch.nn.functional as F |
| 9 | +from torch.autograd import Variable |
| 10 | + |
| 11 | +from utils.utils import clones |
| 12 | + |
| 13 | + |
| 14 | +class LayerNorm(nn.Module): |
| 15 | + def __init__(self, features, epsilon=1e-5): |
| 16 | + self.a_2 = nn.Parameter(torch.ones(features)) |
| 17 | + self.b_2 = nn.Parameter(torch.zeros(features)) |
| 18 | + self.epsilon = epsilon |
| 19 | + |
| 20 | + def forward(self, x): |
| 21 | + mean = x.mean(-1, keepdim=True) |
| 22 | + std = x.std(-1, keepdim=True) |
| 23 | + return self.a_2 * (x - mean) / torch.sqrt(std + self.epsilon) + self.b_2 |
| 24 | + |
| 25 | + |
| 26 | +class Embeddings(nn.Module): |
| 27 | + def __init__(self, embed_dim, vocab_size, keep_prob, padding_id, use_pretrained_embed, pretrained_weights): |
| 28 | + super(Embeddings, self).__init__() |
| 29 | + # Initialize embeddings |
| 30 | + self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_id).cpu() |
| 31 | + if use_pretrained_embed: |
| 32 | + self.load_pretrained_weights() |
| 33 | + self.embed_drop = nn.Dropout(keep_prob) |
| 34 | + |
| 35 | + def forward(self, input): |
| 36 | + x = self.embed_drop(self.embedding(input)) |
| 37 | + out = x.sum(dim=2) |
| 38 | + return out |
| 39 | + |
| 40 | + |
| 41 | +class LanguageModelHead(nn.Module): |
| 42 | + def __init__(self): |
| 43 | + super(LanguageModelHead, self).__init__() |
| 44 | + |
| 45 | + |
| 46 | +class TransformerOpenAI: |
| 47 | + def __init__(self, args): |
| 48 | + super(TransformerOpenAI, self).__init__() |
| 49 | + |
| 50 | + self.args_common = args["common_model_properties"] |
| 51 | + self.args_specific = args["transformer_openai"] |
| 52 | + |
| 53 | + # Device |
| 54 | + self.device = self.args_common["device"] |
| 55 | + |
| 56 | + # Input/Output dimensions |
| 57 | + self.vocab_size = self.args_common["vocab_size"] |
| 58 | + self.embed_dim = self.args_common["embed_dim"] |
| 59 | + self.num_class = self.args_common["num_class"] |
| 60 | + |
| 61 | + # Embedding parameters |
| 62 | + self.padding_id = self.args_common["padding_id"] |
| 63 | + |
| 64 | + # Condition parameters |
| 65 | + self.use_pretrained_embed = self.args_common["use_pretrained_embed"] |
| 66 | + |
| 67 | + # Model/Context size |
| 68 | + self.d_model = self.args_specific["d_model"] |
| 69 | + |
| 70 | + # Dropout probabilities for each individual part of the full model. |
| 71 | + self.keep_prob_embed = self.args_specific["keep_prob_embed"] |
| 72 | + |
| 73 | + # Number of parallel attention layers for MultiHeadedAttention |
| 74 | + self.heads = self.args_specific["heads"] |
| 75 | + |
| 76 | + # Number of layers in terms of Blocks |
| 77 | + self.num_layers = self.args_specific["num_layers"] |
| 78 | + |
| 79 | + if self.transformer_type == "classifier": |
| 80 | + self.model = self.create_classifier_transformer() |
| 81 | + else: |
| 82 | + raise ValueError("Transformer can be created as classifier for now!") |
| 83 | + |
| 84 | + def create_classifier_transformer(self): |
| 85 | + c = copy.deepcopy |
| 86 | + |
| 87 | + embedding = Embeddings(self.embed_dim, self.vocab_size, self.keep_prob_embed, self.padding_id, |
| 88 | + self.use_pretrained_embed, self.pretrained_weights) |
| 89 | + |
| 90 | + |
0 commit comments