|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Using ONNX models in CatBoost\n", |
| 8 | + "\n", |
| 9 | + "It is easy to apply ONNX models using CatBoost.\n", |
| 10 | + "+ Save your model in the ONNX format\n", |
| 11 | + "+ Load the ONNX model into CatBoost using the load_model() method\n", |
| 12 | + "+ Apply your model in CatBoost using the predict() method\n", |
| 13 | + "\n", |
| 14 | + "Let us follow this scenario step-by-step for a LightGBM model." |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "\n", |
| 22 | + "Download the MSRank dataset and import the necessary packages:" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 1, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "from catboost import datasets, CatBoostRegressor\n", |
| 32 | + "\n", |
| 33 | + "from lightgbm import LGBMRegressor\n", |
| 34 | + "\n", |
| 35 | + "import onnxmltools\n", |
| 36 | + "from onnxconverter_common import *\n", |
| 37 | + "\n", |
| 38 | + "\n", |
| 39 | + "train_df, _ = datasets.msrank()\n", |
| 40 | + "X, Y = train_df[train_df.columns[1:]], train_df[train_df.columns[0]]" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "markdown", |
| 45 | + "metadata": {}, |
| 46 | + "source": [ |
| 47 | + "\n", |
| 48 | + "Build a model:" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": 2, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [ |
| 56 | + { |
| 57 | + "name": "stdout", |
| 58 | + "output_type": "stream", |
| 59 | + "text": [ |
| 60 | + "[1.30604501 1.60390655 0.35207384 ... 1.18672199 0.55631924 0.54655847]\n" |
| 61 | + ] |
| 62 | + } |
| 63 | + ], |
| 64 | + "source": [ |
| 65 | + "model = LGBMRegressor()\n", |
| 66 | + "model.fit(X, Y)\n", |
| 67 | + "predict = model.predict(X)\n", |
| 68 | + "print(predict)" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "\n", |
| 76 | + "Save the model in the ONNX format:" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": 3, |
| 82 | + "metadata": { |
| 83 | + "scrolled": false |
| 84 | + }, |
| 85 | + "outputs": [ |
| 86 | + { |
| 87 | + "name": "stderr", |
| 88 | + "output_type": "stream", |
| 89 | + "text": [ |
| 90 | + "The maximum opset needed by this model is only 1.\n", |
| 91 | + "The maximum opset needed by this model is only 1.\n" |
| 92 | + ] |
| 93 | + } |
| 94 | + ], |
| 95 | + "source": [ |
| 96 | + "features_count = len(X.columns)\n", |
| 97 | + "onnx_model = onnxmltools.convert_lightgbm(model, name='LightGBM', initial_types=[['input', FloatTensorType([0, features_count])]])\n", |
| 98 | + "onnxmltools.utils.save_model(onnx_model, 'model.onnx')" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "metadata": {}, |
| 104 | + "source": [ |
| 105 | + "\n", |
| 106 | + "Load the ONNX model into CatBoost and compare the CatBoost and LightGBM predictions:" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 4, |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [ |
| 114 | + { |
| 115 | + "name": "stdout", |
| 116 | + "output_type": "stream", |
| 117 | + "text": [ |
| 118 | + "[1.30604502 1.60390654 0.35207381 ... 1.18672202 0.55631925 0.54655849]\n" |
| 119 | + ] |
| 120 | + } |
| 121 | + ], |
| 122 | + "source": [ |
| 123 | + "catboost_model = CatBoostRegressor()\n", |
| 124 | + "catboost_model.load_model('model.onnx', format='onnx')\n", |
| 125 | + "catboost_predict = catboost_model.predict(X)\n", |
| 126 | + "print(catboost_predict)" |
| 127 | + ] |
| 128 | + } |
| 129 | + ], |
| 130 | + "metadata": { |
| 131 | + "kernelspec": { |
| 132 | + "display_name": "Python 3", |
| 133 | + "language": "python", |
| 134 | + "name": "python3" |
| 135 | + }, |
| 136 | + "language_info": { |
| 137 | + "codemirror_mode": { |
| 138 | + "name": "ipython", |
| 139 | + "version": 3 |
| 140 | + }, |
| 141 | + "file_extension": ".py", |
| 142 | + "mimetype": "text/x-python", |
| 143 | + "name": "python", |
| 144 | + "nbconvert_exporter": "python", |
| 145 | + "pygments_lexer": "ipython3", |
| 146 | + "version": "3.7.3" |
| 147 | + } |
| 148 | + }, |
| 149 | + "nbformat": 4, |
| 150 | + "nbformat_minor": 2 |
| 151 | +} |
0 commit comments