|
| 1 | +# Gaussian Process Regression |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import scipy.optimize |
| 5 | + |
| 6 | + |
| 7 | +class GaussianProcessRegression: |
| 8 | + """ |
| 9 | + Gaussian Process Regression with square exponential kernel |
| 10 | + """ |
| 11 | + |
| 12 | + def __init__(self, X, Y, noise=1., sigma=1., ell=1.): |
| 13 | + """ |
| 14 | + Initializes gaussian process regression. |
| 15 | +
|
| 16 | + :param X: Data, (N, 1) numpy array |
| 17 | + :param Y: Function values, (N, 1) numpy array |
| 18 | + :param noise: Measurement noise, float |
| 19 | + :param sigma: Gain, float |
| 20 | + :param ell: Length scale, float |
| 21 | + """ |
| 22 | + self.X = X |
| 23 | + self.Y = Y |
| 24 | + self.noise = noise |
| 25 | + self.kernel = SquareExponential(sigma, ell) |
| 26 | + self.L, self.alpha = self.invert_gram_matrix() |
| 27 | + |
| 28 | + def invert_gram_matrix(self): |
| 29 | + """ |
| 30 | + Calculates and inverts the gram matrix with cholesky decomposition. |
| 31 | +
|
| 32 | + :return: Lower triangular cholesky factor of the gram matrix, (N, N) numpy array |
| 33 | + Inverted gram matrix multiplied with the function values Y, (N, N) numpy array |
| 34 | + """ |
| 35 | + kXX = self.kernel.k(self.X, self.X) |
| 36 | + gram_matrix = kXX + self.noise ** 2 * np.eye(X.shape[0]) |
| 37 | + L = np.linalg.cholesky(gram_matrix) |
| 38 | + alpha = np.linalg.solve(L.T, np.linalg.solve(L, self.Y)) |
| 39 | + return L, alpha |
| 40 | + |
| 41 | + def neg_log_marginal_likelihood(self): |
| 42 | + """ |
| 43 | + Calculates the negative logarithm of the marginal likelihood. The marginal likelihood is a multivariate |
| 44 | + gaussian with 0 mean and the gram_matrix as covariance-matrix. |
| 45 | +
|
| 46 | + :return: Negative log marginal likelihood, float |
| 47 | + """ |
| 48 | + return 0.5 * (self.Y.T @ self.alpha)[0, 0] + np.sum(np.log(np.diag(self.L))) |
| 49 | + |
| 50 | + def dml_dtheta(self, theta): |
| 51 | + """ |
| 52 | + Calculate the derivative of the negative log marginal likelihood w.r.t the parameters of the kernel. |
| 53 | +
|
| 54 | + :param theta: Parameters of the kernel, (2, 1) numpy array |
| 55 | + :return: Negative log marginal likelihood, float |
| 56 | + Derivative, (2, 1) numpy array |
| 57 | + """ |
| 58 | + self.kernel = SquareExponential(theta[0], theta[1]) |
| 59 | + self.L, self.alpha = self.invert_gram_matrix() |
| 60 | + |
| 61 | + dml_dtheta = [] |
| 62 | + for dk_dtheta in [self.kernel.dk_dsigma(self.X), self.kernel.dk_dell(self.X)]: |
| 63 | + dml_dtheta.append( |
| 64 | + -0.5 * (self.alpha.T @ dk_dtheta @ self.alpha)[0, 0] |
| 65 | + + 0.5 * np.trace(np.linalg.solve(self.L.T, np.linalg.solve(self.L, dk_dtheta))) |
| 66 | + ) |
| 67 | + return self.neg_log_marginal_likelihood(), np.array(dml_dtheta) |
| 68 | + |
| 69 | + def train(self): |
| 70 | + """ |
| 71 | + Trains the gaussian process regression by optimizing the negative log marginal likelihood w.r.t the |
| 72 | + parameters of the kernel. |
| 73 | +
|
| 74 | + """ |
| 75 | + theta = np.array([self.kernel.sigma, self.kernel.ell]) |
| 76 | + res = scipy.optimize.minimize(self.dml_dtheta, theta, jac=True, options={'maxiter': 25}) |
| 77 | + print('Optimized values: sigma = %.3f, ell = %.3f' % (res.x[0], res.x[1])) |
| 78 | + |
| 79 | + def predict(self, x): |
| 80 | + """ |
| 81 | + Predicts function values of unseen data x using gaussian process regression. |
| 82 | +
|
| 83 | + :param x: Unseen data, (N, 1) numpy array |
| 84 | + :return: Point estimates of the function values, (N, 1) numpy array |
| 85 | + Covariance matrix of the function values, (N, N) numpy array |
| 86 | + """ |
| 87 | + kxx = self.kernel.k(x, x) |
| 88 | + kXx = self.kernel.k(self.X, x) |
| 89 | + gain = np.linalg.solve(self.L.T, np.linalg.solve(self.L, kXx)).T |
| 90 | + mu_post = gain @ self.Y |
| 91 | + cov_post = kxx - gain @ kXx |
| 92 | + return mu_post, cov_post |
| 93 | + |
| 94 | + |
| 95 | +class SquareExponential: |
| 96 | + """ |
| 97 | + Square Exponential kernel |
| 98 | + """ |
| 99 | + |
| 100 | + def __init__(self, sigma=1., ell=1.): |
| 101 | + """ |
| 102 | + Initializes the square exponential kernel. |
| 103 | +
|
| 104 | + :param sigma: Gain, float |
| 105 | + :param ell: Length scale, float |
| 106 | + """ |
| 107 | + self.sigma = sigma |
| 108 | + self.ell = ell |
| 109 | + |
| 110 | + def k(self, A, B): |
| 111 | + """ |
| 112 | + Calculate the kernel matrix. |
| 113 | +
|
| 114 | + :param A: Input matrix, (N, 1) numpy array |
| 115 | + :param B: Input matrix, (N, 1) numpy array |
| 116 | + :return: Kernel matrix, (N, N) numpy array |
| 117 | + """ |
| 118 | + return self.sigma ** 2 * np.exp(-squared_l2_norm(A, B) / (2. * self.ell ** 2)) |
| 119 | + |
| 120 | + def dk_dsigma(self, X): |
| 121 | + """ |
| 122 | + Derivative of the kernel matrix with respect to sigma. |
| 123 | +
|
| 124 | + :param X: Data, (N, 1) numpy array |
| 125 | + :return: Derivative w.r.t sigma (N, N) numpy array |
| 126 | + """ |
| 127 | + return 2 * self.k(X, X) / self.sigma |
| 128 | + |
| 129 | + def dk_dell(self, X): |
| 130 | + """ |
| 131 | + Derivative of the kernel matrix with respect to ell. |
| 132 | +
|
| 133 | + :param X: Data, (N, 1) numpy array |
| 134 | + :return: Derivative w.r.t ell (N, N) numpy array |
| 135 | + """ |
| 136 | + return self.k(X, X) * squared_l2_norm(X, X) / self.ell ** 3 |
| 137 | + |
| 138 | + |
| 139 | +def squared_l2_norm(A, B): |
| 140 | + """ |
| 141 | + Helper function to calculate the squared l2 norm between each possible combination of the rows of A and B. |
| 142 | +
|
| 143 | + :param A: Input matrix, (N, 1) numpy array |
| 144 | + :param B: Input matrix, (N, 1) numpy array |
| 145 | + :return: Matrix of l2 norm, (N, N) numpy array |
| 146 | + """ |
| 147 | + return np.array([[np.sum((A[i, :] - B[j, :]) ** 2) |
| 148 | + for j in range(B.shape[0])] |
| 149 | + for i in range(A.shape[0])]) |
| 150 | + |
| 151 | + |
| 152 | +def f(x): |
| 153 | + """ |
| 154 | + Example function to test GP regression. |
| 155 | +
|
| 156 | + :param x: Data, (N, 1) numpy array |
| 157 | + :return: Function values, (N, 1) numpy array |
| 158 | + """ |
| 159 | + return (6 * x - 2) ** 2 * np.sin(12 * x - 4) |
| 160 | + |
| 161 | + |
| 162 | +# Execute GP regression with a sample dataset |
| 163 | +if __name__ == "__main__": |
| 164 | + import matplotlib.pyplot as plt |
| 165 | + |
| 166 | + # Create a sample dataset with random noise |
| 167 | + noise = 0.4 |
| 168 | + X = np.linspace(0, 1.0, 10).reshape(-1, 1) |
| 169 | + Y = f(X) + noise * np.random.randn(*X.shape) |
| 170 | + |
| 171 | + # Fit GP regression to the data |
| 172 | + GP = GaussianProcessRegression(X, Y, noise=noise) |
| 173 | + GP.train() |
| 174 | + |
| 175 | + # Predict unseen data |
| 176 | + x = np.linspace(-0.2, 1.2, 100).reshape(-1, 1) |
| 177 | + y_pred, cov_pred = GP.predict(x) |
| 178 | + |
| 179 | + # Plot the data |
| 180 | + plt.figure(1, figsize=(8, 4)) |
| 181 | + plt.fill_between( |
| 182 | + x.ravel(), |
| 183 | + y_pred.ravel() - 1.96 * np.sqrt(np.diag(cov_pred)), |
| 184 | + y_pred.ravel() + 1.96 * np.sqrt(np.diag(cov_pred)), |
| 185 | + color='C1', |
| 186 | + alpha=0.3, |
| 187 | + label='95%' |
| 188 | + ) |
| 189 | + plt.plot(x, y_pred, 'C1', label='Prediction') |
| 190 | + plt.plot(x, f(x), 'k', label='Real function') |
| 191 | + plt.scatter(X, Y, alpha=1, marker='o', color='C0', label='Data') |
| 192 | + plt.legend() |
| 193 | + plt.show() |
0 commit comments