|  | 
|  | 1 | +""" | 
|  | 2 | +Implementation of Strassen's matrix multiplication algorithm. | 
|  | 3 | +https://en.wikipedia.org/wiki/Strassen_algorithm | 
|  | 4 | +
 | 
|  | 5 | +This is a divide-and-conquer algorithm that is asymptotically faster | 
|  | 6 | +than the standard O(n^3) matrix multiplication for large matrices. | 
|  | 7 | +
 | 
|  | 8 | +Note: In Python, due to the overhead of recursion and list slicing, | 
|  | 9 | +this implementation will be *slower* than the iterative version | 
|  | 10 | +for small or medium-sized matrices (like 4x4). | 
|  | 11 | +""" | 
|  | 12 | + | 
|  | 13 | +# type Matrix = list[list[int]] # psf/black currently fails on this line | 
|  | 14 | +Matrix = list[list[int]] | 
|  | 15 | + | 
|  | 16 | +# --- Test Matrices (reused from other files) --- | 
|  | 17 | +matrix_1_to_4 = [ | 
|  | 18 | + [1, 2], | 
|  | 19 | + [3, 4], | 
|  | 20 | +] | 
|  | 21 | + | 
|  | 22 | +matrix_5_to_8 = [ | 
|  | 23 | + [5, 6], | 
|  | 24 | + [7, 8], | 
|  | 25 | +] | 
|  | 26 | + | 
|  | 27 | +matrix_count_up = [ | 
|  | 28 | + [1, 2, 3, 4], | 
|  | 29 | + [5, 6, 7, 8], | 
|  | 30 | + [9, 10, 11, 12], | 
|  | 31 | + [13, 14, 15, 16], | 
|  | 32 | +] | 
|  | 33 | + | 
|  | 34 | +matrix_unordered = [ | 
|  | 35 | + [5, 8, 1, 2], | 
|  | 36 | + [6, 7, 3, 0], | 
|  | 37 | + [4, 5, 9, 1], | 
|  | 38 | + [2, 6, 10, 14], | 
|  | 39 | +] | 
|  | 40 | + | 
|  | 41 | +matrix_non_square = [ | 
|  | 42 | + [1, 2, 3], | 
|  | 43 | + [4, 5, 6], | 
|  | 44 | +] | 
|  | 45 | + | 
|  | 46 | + | 
|  | 47 | +# --- Helper function from matrix_multiplication_recursion.py --- | 
|  | 48 | +def is_square(matrix: Matrix) -> bool: | 
|  | 49 | + """ | 
|  | 50 | + Checks if a matrix is square. | 
|  | 51 | + >>> is_square(matrix_1_to_4) | 
|  | 52 | + True | 
|  | 53 | + >>> is_square(matrix_non_square) | 
|  | 54 | + False | 
|  | 55 | + """ | 
|  | 56 | + len_matrix = len(matrix) | 
|  | 57 | + return all(len(row) == len_matrix for row in matrix) | 
|  | 58 | + | 
|  | 59 | + | 
|  | 60 | +# --- Helper function for benchmarking --- | 
|  | 61 | +def matrix_multiply(matrix_a: Matrix, matrix_b: Matrix) -> Matrix: | 
|  | 62 | + """ | 
|  | 63 | + Standard iterative matrix multiplication for comparison. | 
|  | 64 | + >>> matrix_multiply(matrix_1_to_4, matrix_5_to_8) | 
|  | 65 | + [[19, 22], [43, 50]] | 
|  | 66 | + """ | 
|  | 67 | + return [ | 
|  | 68 | + [sum(a * b for a, b in zip(row, col)) for col in zip(*matrix_b)] | 
|  | 69 | + for row in matrix_a | 
|  | 70 | + ] | 
|  | 71 | + | 
|  | 72 | + | 
|  | 73 | +# --- Helper functions for Strassen's Algorithm --- | 
|  | 74 | + | 
|  | 75 | + | 
|  | 76 | +def matrix_add(matrix_a: Matrix, matrix_b: Matrix) -> Matrix: | 
|  | 77 | + """ | 
|  | 78 | + Adds two matrices element-wise. | 
|  | 79 | + >>> matrix_add(matrix_1_to_4, matrix_5_to_8) | 
|  | 80 | + [[6, 8], [10, 12]] | 
|  | 81 | + """ | 
|  | 82 | + return [ | 
|  | 83 | + [matrix_a[i][j] + matrix_b[i][j] for j in range(len(matrix_a[0]))] | 
|  | 84 | + for i in range(len(matrix_a)) | 
|  | 85 | + ] | 
|  | 86 | + | 
|  | 87 | + | 
|  | 88 | +def matrix_subtract(matrix_a: Matrix, matrix_b: Matrix) -> Matrix: | 
|  | 89 | + """ | 
|  | 90 | + Subtracts matrix_b from matrix_a element-wise. | 
|  | 91 | + >>> matrix_subtract(matrix_5_to_8, matrix_1_to_4) | 
|  | 92 | + [[4, 4], [4, 4]] | 
|  | 93 | + """ | 
|  | 94 | + return [ | 
|  | 95 | + [matrix_a[i][j] - matrix_b[i][j] for j in range(len(matrix_a[0]))] | 
|  | 96 | + for i in range(len(matrix_a)) | 
|  | 97 | + ] | 
|  | 98 | + | 
|  | 99 | + | 
|  | 100 | +def split_matrix(matrix: Matrix) -> tuple[Matrix, Matrix, Matrix, Matrix]: | 
|  | 101 | + """ | 
|  | 102 | + Splits a given matrix into four equal quadrants. | 
|  | 103 | + >>> a, b, c, d = split_matrix(matrix_count_up) | 
|  | 104 | + >>> a | 
|  | 105 | + [[1, 2], [5, 6]] | 
|  | 106 | + >>> b | 
|  | 107 | + [[3, 4], [7, 8]] | 
|  | 108 | + >>> c | 
|  | 109 | + [[9, 10], [13, 14]] | 
|  | 110 | + >>> d | 
|  | 111 | + [[11, 12], [15, 16]] | 
|  | 112 | + """ | 
|  | 113 | + n = len(matrix) // 2 | 
|  | 114 | + a11 = [row[:n] for row in matrix[:n]] | 
|  | 115 | + a12 = [row[n:] for row in matrix[:n]] | 
|  | 116 | + a21 = [row[:n] for row in matrix[n:]] | 
|  | 117 | + a22 = [row[n:] for row in matrix[n:]] | 
|  | 118 | + return a11, a12, a21, a22 | 
|  | 119 | + | 
|  | 120 | + | 
|  | 121 | +def combine_matrices( | 
|  | 122 | + c11: Matrix, c12: Matrix, c21: Matrix, c22: Matrix | 
|  | 123 | +) -> Matrix: | 
|  | 124 | + """ | 
|  | 125 | + Combines four quadrants into a single matrix. | 
|  | 126 | + >>> a, b, c, d = split_matrix(matrix_count_up) | 
|  | 127 | + >>> combine_matrices(a, b, c, d) == matrix_count_up | 
|  | 128 | + True | 
|  | 129 | + """ | 
|  | 130 | + n = len(c11) | 
|  | 131 | + result = [] | 
|  | 132 | + for i in range(n): | 
|  | 133 | + result.append(c11[i] + c12[i]) | 
|  | 134 | + for i in range(n): | 
|  | 135 | + result.append(c21[i] + c22[i]) | 
|  | 136 | + return result | 
|  | 137 | + | 
|  | 138 | + | 
|  | 139 | +def pad_matrix(matrix: Matrix, target_size: int) -> Matrix: | 
|  | 140 | + """Pads a matrix with zeros to reach the target_size.""" | 
|  | 141 | + n = len(matrix) | 
|  | 142 | + if n == target_size: | 
|  | 143 | + return matrix | 
|  | 144 | + | 
|  | 145 | + padded_matrix = [[0] * target_size for _ in range(target_size)] | 
|  | 146 | + for i in range(n): | 
|  | 147 | + for j in range(len(matrix[i])): | 
|  | 148 | + padded_matrix[i][j] = matrix[i][j] | 
|  | 149 | + return padded_matrix | 
|  | 150 | + | 
|  | 151 | + | 
|  | 152 | +def unpad_matrix(matrix: Matrix, original_size: int) -> Matrix: | 
|  | 153 | + """Removes padding to return to the original_size.""" | 
|  | 154 | + if len(matrix) == original_size: | 
|  | 155 | + return matrix | 
|  | 156 | + return [row[:original_size] for row in matrix[:original_size]] | 
|  | 157 | + | 
|  | 158 | + | 
|  | 159 | +# --- Main Strassen Function --- | 
|  | 160 | + | 
|  | 161 | + | 
|  | 162 | +def strassen(matrix_a: Matrix, matrix_b: Matrix) -> Matrix: | 
|  | 163 | + """ | 
|  | 164 | + :param matrix_a: A square Matrix. | 
|  | 165 | + :param matrix_b: Another square Matrix with the same dimensions as matrix_a. | 
|  | 166 | + :return: Result of matrix_a * matrix_b. | 
|  | 167 | + :raises ValueError: If the matrices cannot be multiplied. | 
|  | 168 | +
 | 
|  | 169 | + >>> strassen([], []) | 
|  | 170 | + [] | 
|  | 171 | + >>> strassen(matrix_1_to_4, matrix_5_to_8) | 
|  | 172 | + [[19, 22], [43, 50]] | 
|  | 173 | + >>> strassen(matrix_count_up, matrix_unordered) | 
|  | 174 | + [[37, 61, 74, 61], [105, 165, 166, 129], [173, 269, 258, 197], [241, 373, 350, 265]] | 
|  | 175 | + >>> strassen(matrix_1_to_4, matrix_non_square) | 
|  | 176 | + Traceback (most recent call last): | 
|  | 177 | + ... | 
|  | 178 | + ValueError: Matrices must be square and of the same dimensions | 
|  | 179 | + >>> strassen(matrix_1_to_4, matrix_count_up) | 
|  | 180 | + Traceback (most recent call last): | 
|  | 181 | + ... | 
|  | 182 | + ValueError: Matrices must be square and of the same dimensions | 
|  | 183 | + """ | 
|  | 184 | + if not matrix_a or not matrix_b: | 
|  | 185 | + return [] | 
|  | 186 | + | 
|  | 187 | + if not ( | 
|  | 188 | + len(matrix_a) == len(matrix_b) | 
|  | 189 | + and is_square(matrix_a) | 
|  | 190 | + and is_square(matrix_b) | 
|  | 191 | + ): | 
|  | 192 | + raise ValueError("Matrices must be square and of the same dimensions") | 
|  | 193 | + | 
|  | 194 | + original_size = len(matrix_a) | 
|  | 195 | + | 
|  | 196 | + # Base case | 
|  | 197 | + if original_size == 1: | 
|  | 198 | + return [[matrix_a[0][0] * matrix_b[0][0]]] | 
|  | 199 | + | 
|  | 200 | + # Pad matrix to the next power of 2 | 
|  | 201 | + n = original_size | 
|  | 202 | + if n & (n - 1) != 0: | 
|  | 203 | + next_power_of_2 = 1 << n.bit_length() | 
|  | 204 | + a = pad_matrix(matrix_a, next_power_of_2) | 
|  | 205 | + b = pad_matrix(matrix_b, next_power_of_2) | 
|  | 206 | + n = next_power_of_2 | 
|  | 207 | + else: | 
|  | 208 | + a = matrix_a | 
|  | 209 | + b = matrix_b | 
|  | 210 | + | 
|  | 211 | + # Split matrices into quadrants | 
|  | 212 | + a11, a12, a21, a22 = split_matrix(a) | 
|  | 213 | + b11, b12, b21, b22 = split_matrix(b) | 
|  | 214 | + | 
|  | 215 | + # Calculate the 7 Strassen products recursively | 
|  | 216 | + p1 = strassen(a11, matrix_subtract(b12, b22)) | 
|  | 217 | + p2 = strassen(matrix_add(a11, a12), b22) | 
|  | 218 | + p3 = strassen(matrix_add(a21, a22), b11) | 
|  | 219 | + p4 = strassen(a22, matrix_subtract(b21, b11)) | 
|  | 220 | + p5 = strassen(matrix_add(a11, a22), matrix_add(b11, b22)) | 
|  | 221 | + p6 = strassen(matrix_subtract(a12, a22), matrix_add(b21, b22)) | 
|  | 222 | + p7 = strassen(matrix_subtract(a11, a21), matrix_add(b11, b12)) | 
|  | 223 | + | 
|  | 224 | + # Calculate result quadrants | 
|  | 225 | + c11 = matrix_add(matrix_subtract(matrix_add(p5, p4), p2), p6) | 
|  | 226 | + c12 = matrix_add(p1, p2) | 
|  | 227 | + c21 = matrix_add(p3, p4) | 
|  | 228 | + c22 = matrix_subtract(matrix_subtract(matrix_add(p5, p1), p3), p7) | 
|  | 229 | + | 
|  | 230 | + # Combine result quadrants | 
|  | 231 | + result = combine_matrices(c11, c12, c21, c22) | 
|  | 232 | + | 
|  | 233 | + # Unpad the result to match original dimensions | 
|  | 234 | + return unpad_matrix(result, original_size) | 
|  | 235 | + | 
|  | 236 | + | 
|  | 237 | +if __name__ == "__main__": | 
|  | 238 | + from doctest import testmod | 
|  | 239 | + | 
|  | 240 | + failure_count, test_count = testmod() | 
|  | 241 | + if not failure_count: | 
|  | 242 | + print("\nBenchmark (Note: Strassen has high overhead in Python):") | 
|  | 243 | + from functools import partial | 
|  | 244 | + from timeit import timeit | 
|  | 245 | + | 
|  | 246 | + # Run fewer iterations as Strassen is slower for small matrices in Python | 
|  | 247 | + mytimeit = partial(timeit, globals=globals(), number=10_0DENIED) | 
|  | 248 | + for func in ("matrix_multiply", "strassen"): | 
|  | 249 | + print( | 
|  | 250 | + f"{func:>25}(): " | 
|  | 251 | + f"{mytimeit(f'{func}(matrix_count_up, matrix_unordered)')}" | 
|  | 252 | + ) | 
0 commit comments