Skip to content

Commit f40df02

Browse files
Implement Strassen's matrix multiplication algorithm
This file implements Strassen's matrix multiplication algorithm, which is faster than the standard O(n^3) method for large matrices. It includes helper functions for matrix operations and benchmarks the performance of Strassen's algorithm against standard multiplication.
1 parent c79034c commit f40df02

File tree

1 file changed

+252
-0
lines changed

1 file changed

+252
-0
lines changed

matrix/strassen.py

Lines changed: 252 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,252 @@
1+
"""
2+
Implementation of Strassen's matrix multiplication algorithm.
3+
https://en.wikipedia.org/wiki/Strassen_algorithm
4+
5+
This is a divide-and-conquer algorithm that is asymptotically faster
6+
than the standard O(n^3) matrix multiplication for large matrices.
7+
8+
Note: In Python, due to the overhead of recursion and list slicing,
9+
this implementation will be *slower* than the iterative version
10+
for small or medium-sized matrices (like 4x4).
11+
"""
12+
13+
# type Matrix = list[list[int]] # psf/black currently fails on this line
14+
Matrix = list[list[int]]
15+
16+
# --- Test Matrices (reused from other files) ---
17+
matrix_1_to_4 = [
18+
[1, 2],
19+
[3, 4],
20+
]
21+
22+
matrix_5_to_8 = [
23+
[5, 6],
24+
[7, 8],
25+
]
26+
27+
matrix_count_up = [
28+
[1, 2, 3, 4],
29+
[5, 6, 7, 8],
30+
[9, 10, 11, 12],
31+
[13, 14, 15, 16],
32+
]
33+
34+
matrix_unordered = [
35+
[5, 8, 1, 2],
36+
[6, 7, 3, 0],
37+
[4, 5, 9, 1],
38+
[2, 6, 10, 14],
39+
]
40+
41+
matrix_non_square = [
42+
[1, 2, 3],
43+
[4, 5, 6],
44+
]
45+
46+
47+
# --- Helper function from matrix_multiplication_recursion.py ---
48+
def is_square(matrix: Matrix) -> bool:
49+
"""
50+
Checks if a matrix is square.
51+
>>> is_square(matrix_1_to_4)
52+
True
53+
>>> is_square(matrix_non_square)
54+
False
55+
"""
56+
len_matrix = len(matrix)
57+
return all(len(row) == len_matrix for row in matrix)
58+
59+
60+
# --- Helper function for benchmarking ---
61+
def matrix_multiply(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
62+
"""
63+
Standard iterative matrix multiplication for comparison.
64+
>>> matrix_multiply(matrix_1_to_4, matrix_5_to_8)
65+
[[19, 22], [43, 50]]
66+
"""
67+
return [
68+
[sum(a * b for a, b in zip(row, col)) for col in zip(*matrix_b)]
69+
for row in matrix_a
70+
]
71+
72+
73+
# --- Helper functions for Strassen's Algorithm ---
74+
75+
76+
def matrix_add(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
77+
"""
78+
Adds two matrices element-wise.
79+
>>> matrix_add(matrix_1_to_4, matrix_5_to_8)
80+
[[6, 8], [10, 12]]
81+
"""
82+
return [
83+
[matrix_a[i][j] + matrix_b[i][j] for j in range(len(matrix_a[0]))]
84+
for i in range(len(matrix_a))
85+
]
86+
87+
88+
def matrix_subtract(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
89+
"""
90+
Subtracts matrix_b from matrix_a element-wise.
91+
>>> matrix_subtract(matrix_5_to_8, matrix_1_to_4)
92+
[[4, 4], [4, 4]]
93+
"""
94+
return [
95+
[matrix_a[i][j] - matrix_b[i][j] for j in range(len(matrix_a[0]))]
96+
for i in range(len(matrix_a))
97+
]
98+
99+
100+
def split_matrix(matrix: Matrix) -> tuple[Matrix, Matrix, Matrix, Matrix]:
101+
"""
102+
Splits a given matrix into four equal quadrants.
103+
>>> a, b, c, d = split_matrix(matrix_count_up)
104+
>>> a
105+
[[1, 2], [5, 6]]
106+
>>> b
107+
[[3, 4], [7, 8]]
108+
>>> c
109+
[[9, 10], [13, 14]]
110+
>>> d
111+
[[11, 12], [15, 16]]
112+
"""
113+
n = len(matrix) // 2
114+
a11 = [row[:n] for row in matrix[:n]]
115+
a12 = [row[n:] for row in matrix[:n]]
116+
a21 = [row[:n] for row in matrix[n:]]
117+
a22 = [row[n:] for row in matrix[n:]]
118+
return a11, a12, a21, a22
119+
120+
121+
def combine_matrices(
122+
c11: Matrix, c12: Matrix, c21: Matrix, c22: Matrix
123+
) -> Matrix:
124+
"""
125+
Combines four quadrants into a single matrix.
126+
>>> a, b, c, d = split_matrix(matrix_count_up)
127+
>>> combine_matrices(a, b, c, d) == matrix_count_up
128+
True
129+
"""
130+
n = len(c11)
131+
result = []
132+
for i in range(n):
133+
result.append(c11[i] + c12[i])
134+
for i in range(n):
135+
result.append(c21[i] + c22[i])
136+
return result
137+
138+
139+
def pad_matrix(matrix: Matrix, target_size: int) -> Matrix:
140+
"""Pads a matrix with zeros to reach the target_size."""
141+
n = len(matrix)
142+
if n == target_size:
143+
return matrix
144+
145+
padded_matrix = [[0] * target_size for _ in range(target_size)]
146+
for i in range(n):
147+
for j in range(len(matrix[i])):
148+
padded_matrix[i][j] = matrix[i][j]
149+
return padded_matrix
150+
151+
152+
def unpad_matrix(matrix: Matrix, original_size: int) -> Matrix:
153+
"""Removes padding to return to the original_size."""
154+
if len(matrix) == original_size:
155+
return matrix
156+
return [row[:original_size] for row in matrix[:original_size]]
157+
158+
159+
# --- Main Strassen Function ---
160+
161+
162+
def strassen(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
163+
"""
164+
:param matrix_a: A square Matrix.
165+
:param matrix_b: Another square Matrix with the same dimensions as matrix_a.
166+
:return: Result of matrix_a * matrix_b.
167+
:raises ValueError: If the matrices cannot be multiplied.
168+
169+
>>> strassen([], [])
170+
[]
171+
>>> strassen(matrix_1_to_4, matrix_5_to_8)
172+
[[19, 22], [43, 50]]
173+
>>> strassen(matrix_count_up, matrix_unordered)
174+
[[37, 61, 74, 61], [105, 165, 166, 129], [173, 269, 258, 197], [241, 373, 350, 265]]
175+
>>> strassen(matrix_1_to_4, matrix_non_square)
176+
Traceback (most recent call last):
177+
...
178+
ValueError: Matrices must be square and of the same dimensions
179+
>>> strassen(matrix_1_to_4, matrix_count_up)
180+
Traceback (most recent call last):
181+
...
182+
ValueError: Matrices must be square and of the same dimensions
183+
"""
184+
if not matrix_a or not matrix_b:
185+
return []
186+
187+
if not (
188+
len(matrix_a) == len(matrix_b)
189+
and is_square(matrix_a)
190+
and is_square(matrix_b)
191+
):
192+
raise ValueError("Matrices must be square and of the same dimensions")
193+
194+
original_size = len(matrix_a)
195+
196+
# Base case
197+
if original_size == 1:
198+
return [[matrix_a[0][0] * matrix_b[0][0]]]
199+
200+
# Pad matrix to the next power of 2
201+
n = original_size
202+
if n & (n - 1) != 0:
203+
next_power_of_2 = 1 << n.bit_length()
204+
a = pad_matrix(matrix_a, next_power_of_2)
205+
b = pad_matrix(matrix_b, next_power_of_2)
206+
n = next_power_of_2
207+
else:
208+
a = matrix_a
209+
b = matrix_b
210+
211+
# Split matrices into quadrants
212+
a11, a12, a21, a22 = split_matrix(a)
213+
b11, b12, b21, b22 = split_matrix(b)
214+
215+
# Calculate the 7 Strassen products recursively
216+
p1 = strassen(a11, matrix_subtract(b12, b22))
217+
p2 = strassen(matrix_add(a11, a12), b22)
218+
p3 = strassen(matrix_add(a21, a22), b11)
219+
p4 = strassen(a22, matrix_subtract(b21, b11))
220+
p5 = strassen(matrix_add(a11, a22), matrix_add(b11, b22))
221+
p6 = strassen(matrix_subtract(a12, a22), matrix_add(b21, b22))
222+
p7 = strassen(matrix_subtract(a11, a21), matrix_add(b11, b12))
223+
224+
# Calculate result quadrants
225+
c11 = matrix_add(matrix_subtract(matrix_add(p5, p4), p2), p6)
226+
c12 = matrix_add(p1, p2)
227+
c21 = matrix_add(p3, p4)
228+
c22 = matrix_subtract(matrix_subtract(matrix_add(p5, p1), p3), p7)
229+
230+
# Combine result quadrants
231+
result = combine_matrices(c11, c12, c21, c22)
232+
233+
# Unpad the result to match original dimensions
234+
return unpad_matrix(result, original_size)
235+
236+
237+
if __name__ == "__main__":
238+
from doctest import testmod
239+
240+
failure_count, test_count = testmod()
241+
if not failure_count:
242+
print("\nBenchmark (Note: Strassen has high overhead in Python):")
243+
from functools import partial
244+
from timeit import timeit
245+
246+
# Run fewer iterations as Strassen is slower for small matrices in Python
247+
mytimeit = partial(timeit, globals=globals(), number=10_0DENIED)
248+
for func in ("matrix_multiply", "strassen"):
249+
print(
250+
f"{func:>25}(): "
251+
f"{mytimeit(f'{func}(matrix_count_up, matrix_unordered)')}"
252+
)

0 commit comments

Comments
 (0)