|  | 
|  | 1 | +""" | 
|  | 2 | +Project Euler Problem 345: https://projecteuler.net/problem=345 | 
|  | 3 | +
 | 
|  | 4 | +Matrix Sum | 
|  | 5 | +
 | 
|  | 6 | +We define the Matrix Sum of a matrix as the maximum possible sum of | 
|  | 7 | +matrix elements such that none of the selected elements share the same row or column. | 
|  | 8 | +
 | 
|  | 9 | +For example, the Matrix Sum of the matrix below equals | 
|  | 10 | +3315 ( = 863 + 383 + 343 + 959 + 767): | 
|  | 11 | + 7 53 183 439 863 | 
|  | 12 | + 497 383 563 79 973 | 
|  | 13 | + 287 63 343 169 583 | 
|  | 14 | + 627 343 773 959 943 | 
|  | 15 | + 767 473 103 699 303 | 
|  | 16 | +
 | 
|  | 17 | +Find the Matrix Sum of: | 
|  | 18 | + 7 53 183 439 863 497 383 563 79 973 287 63 343 169 583 | 
|  | 19 | + 627 343 773 959 943 767 473 103 699 303 957 703 583 639 913 | 
|  | 20 | + 447 283 463 29 23 487 463 993 119 883 327 493 423 159 743 | 
|  | 21 | + 217 623 3 399 853 407 103 983 89 463 290 516 212 462 350 | 
|  | 22 | + 960 376 682 962 300 780 486 502 912 800 250 346 172 812 350 | 
|  | 23 | + 870 456 192 162 593 473 915 45 989 873 823 965 425 329 803 | 
|  | 24 | + 973 965 905 919 133 673 665 235 509 613 673 815 165 992 326 | 
|  | 25 | + 322 148 972 962 286 255 941 541 265 323 925 281 601 95 973 | 
|  | 26 | + 445 721 11 525 473 65 511 164 138 672 18 428 154 448 848 | 
|  | 27 | + 414 456 310 312 798 104 566 520 302 248 694 976 430 392 198 | 
|  | 28 | + 184 829 373 181 631 101 969 613 840 740 778 458 284 760 390 | 
|  | 29 | + 821 461 843 513 17 901 711 993 293 157 274 94 192 156 574 | 
|  | 30 | + 34 124 4 878 450 476 712 914 838 669 875 299 823 329 699 | 
|  | 31 | + 815 559 813 459 522 788 168 586 966 232 308 833 251 631 107 | 
|  | 32 | + 813 883 451 509 615 77 281 613 459 205 380 274 302 35 805 | 
|  | 33 | +
 | 
|  | 34 | +Brute force solution, with caching intermediate steps to speed up the calculation. | 
|  | 35 | +""" | 
|  | 36 | + | 
|  | 37 | +import numpy as np | 
|  | 38 | +from numpy.typing import NDArray | 
|  | 39 | + | 
|  | 40 | +MATRIX_1 = [ | 
|  | 41 | + "7 53 183 439 863", | 
|  | 42 | + "497 383 563 79 973", | 
|  | 43 | + "287 63 343 169 583", | 
|  | 44 | + "627 343 773 959 943", | 
|  | 45 | + "767 473 103 699 303", | 
|  | 46 | +] | 
|  | 47 | + | 
|  | 48 | +MATRIX_2 = [ | 
|  | 49 | + "7 53 183 439 863 497 383 563 79 973 287 63 343 169 583", | 
|  | 50 | + "627 343 773 959 943 767 473 103 699 303 957 703 583 639 913", | 
|  | 51 | + "447 283 463 29 23 487 463 993 119 883 327 493 423 159 743", | 
|  | 52 | + "217 623 3 399 853 407 103 983 89 463 290 516 212 462 350", | 
|  | 53 | + "960 376 682 962 300 780 486 502 912 800 250 346 172 812 350", | 
|  | 54 | + "870 456 192 162 593 473 915 45 989 873 823 965 425 329 803", | 
|  | 55 | + "973 965 905 919 133 673 665 235 509 613 673 815 165 992 326", | 
|  | 56 | + "322 148 972 962 286 255 941 541 265 323 925 281 601 95 973", | 
|  | 57 | + "445 721 11 525 473 65 511 164 138 672 18 428 154 448 848", | 
|  | 58 | + "414 456 310 312 798 104 566 520 302 248 694 976 430 392 198", | 
|  | 59 | + "184 829 373 181 631 101 969 613 840 740 778 458 284 760 390", | 
|  | 60 | + "821 461 843 513 17 901 711 993 293 157 274 94 192 156 574", | 
|  | 61 | + "34 124 4 878 450 476 712 914 838 669 875 299 823 329 699", | 
|  | 62 | + "815 559 813 459 522 788 168 586 966 232 308 833 251 631 107", | 
|  | 63 | + "813 883 451 509 615 77 281 613 459 205 380 274 302 35 805", | 
|  | 64 | +] | 
|  | 65 | + | 
|  | 66 | + | 
|  | 67 | +def solve(arr: NDArray, row: int, cols: set[int], cache: dict[str, int]) -> int: | 
|  | 68 | + """ | 
|  | 69 | + Finds the max sum for array `arr` starting with row index `row`, and with columns | 
|  | 70 | + included in `cols`. `cache` is used for caching intermediate results. | 
|  | 71 | +
 | 
|  | 72 | + >>> solve(arr=np.array([[1, 2], [3, 4]]), row=0, cols={0, 1}, cache={}) | 
|  | 73 | + 5 | 
|  | 74 | + """ | 
|  | 75 | + | 
|  | 76 | + cache_id = f"{row}, {sorted(cols)}" | 
|  | 77 | + if cache_id in cache: | 
|  | 78 | + return cache[cache_id] | 
|  | 79 | + | 
|  | 80 | + if row == len(arr): | 
|  | 81 | + return 0 | 
|  | 82 | + | 
|  | 83 | + max_sum = 0 | 
|  | 84 | + for col in cols: | 
|  | 85 | + new_cols = cols - {col} | 
|  | 86 | + max_sum = max( | 
|  | 87 | + max_sum, | 
|  | 88 | + int(arr[row, col]) | 
|  | 89 | + + solve(arr=arr, row=row + 1, cols=new_cols, cache=cache), | 
|  | 90 | + ) | 
|  | 91 | + cache[cache_id] = max_sum | 
|  | 92 | + return max_sum | 
|  | 93 | + | 
|  | 94 | + | 
|  | 95 | +def solution(matrix_str: list[str] = MATRIX_2) -> int: | 
|  | 96 | + """ | 
|  | 97 | + Takes list of strings `matrix_str` to parse the matrix and calculates the max sum. | 
|  | 98 | +
 | 
|  | 99 | + >>> solution(["1 2", "3 4"]) | 
|  | 100 | + 5 | 
|  | 101 | + >>> solution(MATRIX_1) | 
|  | 102 | + 3315 | 
|  | 103 | + """ | 
|  | 104 | + | 
|  | 105 | + n = len(matrix_str) | 
|  | 106 | + arr = np.empty(shape=(n, n), dtype=int) | 
|  | 107 | + for row, matrix_row_str in enumerate(matrix_str): | 
|  | 108 | + matrix_row_list_str = matrix_row_str.split() | 
|  | 109 | + for col, elem_str in enumerate(matrix_row_list_str): | 
|  | 110 | + arr[row, col] = int(elem_str) | 
|  | 111 | + | 
|  | 112 | + cache: dict[str, int] = {} | 
|  | 113 | + return solve(arr=arr, row=0, cols=set(range(n)), cache=cache) | 
|  | 114 | + | 
|  | 115 | + | 
|  | 116 | +if __name__ == "__main__": | 
|  | 117 | + print(f"{solution() = }") | 
0 commit comments