Skip to content

Commit f6f6777

Browse files
Changes made at Student Intervention according to review.
1 parent 869da3f commit f6f6777

File tree

3 files changed

+21
-21
lines changed

3 files changed

+21
-21
lines changed

projects/student_intervention/.ipynb_checkpoints/student_intervention-checkpoint.ipynb

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@
4747
},
4848
{
4949
"cell_type": "code",
50-
"execution_count": 49,
50+
"execution_count": 1,
5151
"metadata": {
5252
"collapsed": false
5353
},
@@ -74,7 +74,7 @@
7474
},
7575
{
7676
"cell_type": "code",
77-
"execution_count": 50,
77+
"execution_count": 2,
7878
"metadata": {
7979
"collapsed": false
8080
},
@@ -261,7 +261,7 @@
261261
"[5 rows x 31 columns]"
262262
]
263263
},
264-
"execution_count": 50,
264+
"execution_count": 2,
265265
"metadata": {},
266266
"output_type": "execute_result"
267267
}
@@ -310,7 +310,7 @@
310310
},
311311
{
312312
"cell_type": "code",
313-
"execution_count": 52,
313+
"execution_count": 3,
314314
"metadata": {
315315
"collapsed": false
316316
},
@@ -320,7 +320,7 @@
320320
"output_type": "stream",
321321
"text": [
322322
"Total number of students: 395\n",
323-
"Number of features: 31\n",
323+
"Number of features: 30\n",
324324
"Number of students who passed: 265\n",
325325
"Number of students who failed: 130\n",
326326
"Graduation rate of the class: 67.09%\n"
@@ -332,7 +332,7 @@
332332
"n_students = student_data.shape[0]\n",
333333
"\n",
334334
"# TODO: Calculate number of features\n",
335-
"n_features = student_data.shape[1]\n",
335+
"n_features = student_data.shape[1] - 1\n",
336336
"\n",
337337
"# TODO: Calculate passing students\n",
338338
"n_passed = student_data[\"passed\"].value_counts()[\"yes\"]\n",
@@ -580,7 +580,7 @@
580580
"\n",
581581
"** 2. Support Vector Machine :** \n",
582582
"\n",
583-
"Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks.\n",
583+
"Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks. Support Vector Machines have been successfully used on high dimensional data such as genetic data(protein structure prediction), music(song genre classification, music retrival), image classification(histogram based), image retrieval etc.\n",
584584
"\n",
585585
"* Strengths :\n",
586586
" 1. As Support Vector Machine tries to find the seperator hyperplane that has the maximum distance between the seperate classes, it's not prone to overfitting.\n",

projects/student_intervention/student_intervention.html

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -226,7 +226,7 @@ <h2 id="Exploring-the-Data">Exploring the Data<a class="anchor-link" href="#Expl
226226
</div>
227227
<div class="cell border-box-sizing code_cell rendered">
228228
<div class="input">
229-
<div class="prompt input_prompt">In&nbsp;[49]:</div>
229+
<div class="prompt input_prompt">In&nbsp;[1]:</div>
230230
<div class="inner_cell">
231231
<div class="input_area">
232232
<div class=" highlight hl-ipython2"><pre><span></span><span class="c1"># Import libraries</span>
@@ -261,7 +261,7 @@ <h2 id="Exploring-the-Data">Exploring the Data<a class="anchor-link" href="#Expl
261261
</div>
262262
<div class="cell border-box-sizing code_cell rendered">
263263
<div class="input">
264-
<div class="prompt input_prompt">In&nbsp;[50]:</div>
264+
<div class="prompt input_prompt">In&nbsp;[2]:</div>
265265
<div class="inner_cell">
266266
<div class="input_area">
267267
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">student_data</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
@@ -275,7 +275,7 @@ <h2 id="Exploring-the-Data">Exploring the Data<a class="anchor-link" href="#Expl
275275
<div class="output">
276276

277277

278-
<div class="output_area"><div class="prompt output_prompt">Out[50]:</div>
278+
<div class="output_area"><div class="prompt output_prompt">Out[2]:</div>
279279

280280
<div class="output_html rendered_html output_subarea output_execute_result">
281281
<div>
@@ -489,14 +489,14 @@ <h3 id="Implementation:-Data-Exploration">Implementation: Data Exploration<a cla
489489
</div>
490490
<div class="cell border-box-sizing code_cell rendered">
491491
<div class="input">
492-
<div class="prompt input_prompt">In&nbsp;[52]:</div>
492+
<div class="prompt input_prompt">In&nbsp;[3]:</div>
493493
<div class="inner_cell">
494494
<div class="input_area">
495495
<div class=" highlight hl-ipython2"><pre><span></span><span class="c1"># TODO: Calculate number of students</span>
496496
<span class="n">n_students</span> <span class="o">=</span> <span class="n">student_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
497497

498498
<span class="c1"># TODO: Calculate number of features</span>
499-
<span class="n">n_features</span> <span class="o">=</span> <span class="n">student_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
499+
<span class="n">n_features</span> <span class="o">=</span> <span class="n">student_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span>
500500

501501
<span class="c1"># TODO: Calculate passing students</span>
502502
<span class="n">n_passed</span> <span class="o">=</span> <span class="n">student_data</span><span class="p">[</span><span class="s2">&quot;passed&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="s2">&quot;yes&quot;</span><span class="p">]</span>
@@ -526,7 +526,7 @@ <h3 id="Implementation:-Data-Exploration">Implementation: Data Exploration<a cla
526526
<div class="output_area"><div class="prompt"></div>
527527
<div class="output_subarea output_stream output_stdout output_text">
528528
<pre>Total number of students: 395
529-
Number of features: 31
529+
Number of features: 30
530530
Number of students who passed: 265
531531
Number of students who failed: 130
532532
Graduation rate of the class: 67.09%
@@ -803,7 +803,7 @@ <h3 id="Question-2---Model-Application">Question 2 - Model Application<a class="
803803
</li>
804804
</ul>
805805
<p><strong> 2. Support Vector Machine :</strong></p>
806-
<p>Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks.</p>
806+
<p>Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks. Support Vector Machines have been successfully used on high dimensional data such as genetic data(protein structure prediction), music(song genre classification, music retrival), image classification(histogram based), image retrieval etc.</p>
807807
<ul>
808808
<li><p>Strengths :</p>
809809
<ol>

projects/student_intervention/student_intervention.ipynb

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@
4747
},
4848
{
4949
"cell_type": "code",
50-
"execution_count": 49,
50+
"execution_count": 1,
5151
"metadata": {
5252
"collapsed": false
5353
},
@@ -74,7 +74,7 @@
7474
},
7575
{
7676
"cell_type": "code",
77-
"execution_count": 50,
77+
"execution_count": 2,
7878
"metadata": {
7979
"collapsed": false
8080
},
@@ -261,7 +261,7 @@
261261
"[5 rows x 31 columns]"
262262
]
263263
},
264-
"execution_count": 50,
264+
"execution_count": 2,
265265
"metadata": {},
266266
"output_type": "execute_result"
267267
}
@@ -310,7 +310,7 @@
310310
},
311311
{
312312
"cell_type": "code",
313-
"execution_count": 52,
313+
"execution_count": 3,
314314
"metadata": {
315315
"collapsed": false
316316
},
@@ -320,7 +320,7 @@
320320
"output_type": "stream",
321321
"text": [
322322
"Total number of students: 395\n",
323-
"Number of features: 31\n",
323+
"Number of features: 30\n",
324324
"Number of students who passed: 265\n",
325325
"Number of students who failed: 130\n",
326326
"Graduation rate of the class: 67.09%\n"
@@ -332,7 +332,7 @@
332332
"n_students = student_data.shape[0]\n",
333333
"\n",
334334
"# TODO: Calculate number of features\n",
335-
"n_features = student_data.shape[1]\n",
335+
"n_features = student_data.shape[1] - 1\n",
336336
"\n",
337337
"# TODO: Calculate passing students\n",
338338
"n_passed = student_data[\"passed\"].value_counts()[\"yes\"]\n",
@@ -580,7 +580,7 @@
580580
"\n",
581581
"** 2. Support Vector Machine :** \n",
582582
"\n",
583-
"Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks.\n",
583+
"Support vector machines classify data by finding the maximum margin hyperplane that seperates class labels, it's also a very popular model like the other two, decision trees and K-nearest neighbors and used in industry for classification and regression tasks. Support Vector Machines have been successfully used on high dimensional data such as genetic data(protein structure prediction), music(song genre classification, music retrival), image classification(histogram based), image retrieval etc.\n",
584584
"\n",
585585
"* Strengths :\n",
586586
" 1. As Support Vector Machine tries to find the seperator hyperplane that has the maximum distance between the seperate classes, it's not prone to overfitting.\n",

0 commit comments

Comments
 (0)