Skip to content

Commit cba1b8a

Browse files
committed
Merge branch 'master' of https://github.com/ddbourgin/numpy-ml into master
2 parents 672dd2b + 6a0d0d0 commit cba1b8a

File tree

2 files changed

+8
-3
lines changed

2 files changed

+8
-3
lines changed

numpy_ml/README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -92,6 +92,8 @@ This repo includes code for the following models:
9292
- Ridge regression
9393
- Logistic regression
9494
- Ordinary least squares
95+
- Gaussian naive Bayes classifier
96+
- Generalized linear model (identity, log, and logit links)
9597
- Bayesian linear regression w/ conjugate priors
9698
- Unknown mean, known variance (Gaussian prior)
9799
- Unknown mean, unknown variance (Normal-Gamma / Normal-Inverse-Wishart prior)

numpy_ml/linear_models/README.md

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,17 @@
11
# Linear Models
2-
The `lm.py` module implements:
2+
The `linear_models` module includes:
33

4-
1. [OLS linear regression](https://en.wikipedia.org/wiki/Ordinary_least_squares) with maximum likelihood parameter estimates via the normal equation. For both (Online and Batch mode)
5-
2. [Ridge regression / Tikhonov regularization](https://en.wikipedia.org/wiki/Tikhonov_regularization)
4+
1. [OLS linear regression](https://en.wikipedia.org/wiki/Ordinary_least_squares) with maximum likelihood parameter estimates via the normal equation.
5+
- Includes optional weight arguments for [weighted least squares](https://en.wikipedia.org/wiki/Weighted_least_squares)
6+
- Supports batch and online coefficient updates.
7+
3. [Ridge regression / Tikhonov regularization](https://en.wikipedia.org/wiki/Tikhonov_regularization)
68
with maximum likelihood parameter estimates via the normal equation.
79
2. [Logistic regression](https://en.wikipedia.org/wiki/Logistic_regression) with maximum likelihood parameter estimates via gradient descent.
810
3. [Bayesian linear regression](https://en.wikipedia.org/wiki/Bayesian_linear_regression) with maximum a posteriori parameter estimates via [conjugacy](https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions)
911
- Known coefficient prior mean and known error variance
1012
- Known coefficient prior mean and unknown error variance
1113
4. [Naive Bayes classifier](https://en.wikipedia.org/wiki/Naive_Bayes_classifier) with Gaussian feature likelihoods.
14+
5. [Generalized linear model](https://en.wikipedia.org/wiki/Generalized_linear_model) with identity, log, and logit link functions.
1215

1316
## Plots
1417
<p align="center">

0 commit comments

Comments
 (0)