|
| 1 | +"""A module of Bayesian linear regression models.""" |
| 2 | +import numpy as np |
| 3 | +import scipy.stats as stats |
| 4 | + |
| 5 | +from numpy_ml.utils.testing import is_number, is_symmetric_positive_definite |
| 6 | + |
| 7 | + |
| 8 | +class BayesianLinearRegressionUnknownVariance: |
| 9 | + def __init__(self, alpha=1, beta=2, mu=0, V=None, fit_intercept=True): |
| 10 | + r""" |
| 11 | + Bayesian linear regression model with unknown variance. Assumes a |
| 12 | + conjugate normal-inverse-gamma joint prior on the model parameters and |
| 13 | + error variance. |
| 14 | +
|
| 15 | + Notes |
| 16 | + ----- |
| 17 | + The current model uses a conjugate normal-inverse-gamma joint prior on |
| 18 | + model parameters **b** and error variance :math:`\sigma^2`. The joint |
| 19 | + and marginal posteriors over each are: |
| 20 | +
|
| 21 | + .. math:: |
| 22 | +
|
| 23 | + \mathbf{b}, \sigma^2 &\sim |
| 24 | + \text{N-\Gamma^{-1}}(\mu, \mathbf{V}^{-1}, \alpha, \beta) \\ |
| 25 | + \sigma^2 &\sim \text{InverseGamma}(\alpha, \beta) \\ |
| 26 | + \mathbf{b} \mid \sigma^2 &\sim \mathcal{N}(\mu, \sigma^2 \mathbf{V}) |
| 27 | +
|
| 28 | + Parameters |
| 29 | + ---------- |
| 30 | + alpha : float |
| 31 | + The shape parameter for the Inverse-Gamma prior on |
| 32 | + :math:`\sigma^2`. Must be strictly greater than 0. Default is 1. |
| 33 | + beta : float |
| 34 | + The scale parameter for the Inverse-Gamma prior on |
| 35 | + :math:`\sigma^2`. Must be strictly greater than 0. Default is 1. |
| 36 | + mu : :py:class:`ndarray <numpy.ndarray>` of shape `(M,)` or float |
| 37 | + The mean of the Gaussian prior on `b`. If a float, assume `mu` |
| 38 | + is ``np.ones(M) * mu``. Default is 0. |
| 39 | + V : :py:class:`ndarray <numpy.ndarray>` of shape `(N, N)` or `(N,)` or None |
| 40 | + A symmetric positive definite matrix that when multiplied |
| 41 | + element-wise by :math:`\sigma^2` gives the covariance matrix for |
| 42 | + the Gaussian prior on `b`. If a list, assume ``V = diag(V)``. If |
| 43 | + None, assume `V` is the identity matrix. Default is None. |
| 44 | + fit_intercept : bool |
| 45 | + Whether to fit an intercept term in addition to the coefficients in |
| 46 | + b. If True, the estimates for b will have `M + 1` dimensions, where |
| 47 | + the first dimension corresponds to the intercept. Default is True. |
| 48 | +
|
| 49 | + Attributes |
| 50 | + ---------- |
| 51 | + posterior : dict or None |
| 52 | + Frozen random variables for the posterior distributions |
| 53 | + :math:`P(\sigma^2 \mid X)` and :math:`P(b \mid X, \sigma^2)`. |
| 54 | + posterior_predictive : dict or None |
| 55 | + Frozen random variable for the posterior predictive distribution, |
| 56 | + :math:`P(y \mid X)`. This value is only set following a call to |
| 57 | + :meth:`numpy_ml.linear_models.BayesianLinearRegressionUnknownVariance.predict`. |
| 58 | + """ # noqa: E501 |
| 59 | + # this is a placeholder until we know the dimensions of X |
| 60 | + V = 1.0 if V is None else V |
| 61 | + |
| 62 | + if isinstance(V, list): |
| 63 | + V = np.array(V) |
| 64 | + |
| 65 | + if isinstance(V, np.ndarray): |
| 66 | + if V.ndim == 1: |
| 67 | + V = np.diag(V) |
| 68 | + elif V.ndim == 2: |
| 69 | + fstr = "V must be symmetric positive definite" |
| 70 | + assert is_symmetric_positive_definite(V), fstr |
| 71 | + |
| 72 | + self.V = V |
| 73 | + self.mu = mu |
| 74 | + self.beta = beta |
| 75 | + self.alpha = alpha |
| 76 | + self.fit_intercept = fit_intercept |
| 77 | + |
| 78 | + self.posterior = None |
| 79 | + self.posterior_predictive = None |
| 80 | + |
| 81 | + def fit(self, X, y): |
| 82 | + """ |
| 83 | + Compute the posterior over model parameters using the data in `X` and |
| 84 | + `y`. |
| 85 | +
|
| 86 | + Parameters |
| 87 | + ---------- |
| 88 | + X : :py:class:`ndarray <numpy.ndarray>` of shape `(N, M)` |
| 89 | + A dataset consisting of `N` examples, each of dimension `M`. |
| 90 | + y : :py:class:`ndarray <numpy.ndarray>` of shape `(N, K)` |
| 91 | + The targets for each of the `N` examples in `X`, where each target |
| 92 | + has dimension `K`. |
| 93 | + """ |
| 94 | + # convert X to a design matrix if we're fitting an intercept |
| 95 | + if self.fit_intercept: |
| 96 | + X = np.c_[np.ones(X.shape[0]), X] |
| 97 | + |
| 98 | + N, M = X.shape |
| 99 | + alpha, beta, V, mu = self.alpha, self.beta, self.V, self.mu |
| 100 | + |
| 101 | + if is_number(V): |
| 102 | + V *= np.eye(M) |
| 103 | + |
| 104 | + if is_number(mu): |
| 105 | + mu *= np.ones(M) |
| 106 | + |
| 107 | + # sigma |
| 108 | + I = np.eye(N) # noqa: E741 |
| 109 | + a = y - (X @ mu) |
| 110 | + b = np.linalg.inv(X @ V @ X.T + I) |
| 111 | + c = y - (X @ mu) |
| 112 | + |
| 113 | + shape = N + alpha |
| 114 | + sigma = (1 / shape) * (alpha * beta ** 2 + a @ b @ c) |
| 115 | + scale = sigma ** 2 |
| 116 | + |
| 117 | + # sigma is the mode of the inverse gamma prior on sigma^2 |
| 118 | + sigma = scale / (shape - 1) |
| 119 | + |
| 120 | + # mean |
| 121 | + V_inv = np.linalg.inv(V) |
| 122 | + L = np.linalg.inv(V_inv + X.T @ X) |
| 123 | + R = V_inv @ mu + X.T @ y |
| 124 | + |
| 125 | + mu = L @ R |
| 126 | + cov = L * sigma |
| 127 | + |
| 128 | + # posterior distribution for sigma^2 and b |
| 129 | + self.posterior = { |
| 130 | + "sigma**2": stats.distributions.invgamma(a=shape, scale=scale), |
| 131 | + "b | sigma**2": stats.multivariate_normal(mean=mu, cov=cov), |
| 132 | + } |
| 133 | + |
| 134 | + def predict(self, X): |
| 135 | + """ |
| 136 | + Return the MAP prediction for the targets associated with `X`. |
| 137 | +
|
| 138 | + Parameters |
| 139 | + ---------- |
| 140 | + X : :py:class:`ndarray <numpy.ndarray>` of shape `(Z, M)` |
| 141 | + A dataset consisting of `Z` new examples, each of dimension `M`. |
| 142 | +
|
| 143 | + Returns |
| 144 | + ------- |
| 145 | + y_pred : :py:class:`ndarray <numpy.ndarray>` of shape `(Z, K)` |
| 146 | + The model predictions for the items in `X`. |
| 147 | + """ |
| 148 | + # convert X to a design matrix if we're fitting an intercept |
| 149 | + if self.fit_intercept: |
| 150 | + X = np.c_[np.ones(X.shape[0]), X] |
| 151 | + |
| 152 | + I = np.eye(X.shape[0]) # noqa: E741 |
| 153 | + mu = X @ self.posterior["b | sigma**2"].mean |
| 154 | + cov = X @ self.posterior["b | sigma**2"].cov @ X.T + I |
| 155 | + |
| 156 | + # MAP estimate for y corresponds to the mean of the posterior |
| 157 | + # predictive |
| 158 | + self.posterior_predictive = stats.multivariate_normal(mu, cov) |
| 159 | + return mu |
| 160 | + |
| 161 | + |
| 162 | +class BayesianLinearRegressionKnownVariance: |
| 163 | + def __init__(self, mu=0, sigma=1, V=None, fit_intercept=True): |
| 164 | + r""" |
| 165 | + Bayesian linear regression model with known error variance and |
| 166 | + conjugate Gaussian prior on model parameters. |
| 167 | +
|
| 168 | + Notes |
| 169 | + ----- |
| 170 | + Uses a conjugate Gaussian prior on the model coefficients **b**. The |
| 171 | + posterior over model coefficients is then |
| 172 | +
|
| 173 | + .. math:: |
| 174 | +
|
| 175 | + \mathbf{b} \mid \mu, \sigma^2, \mathbf{V} |
| 176 | + \sim \mathcal{N}(\mu, \sigma^2 \mathbf{V}) |
| 177 | +
|
| 178 | + Ridge regression is a special case of this model where :math:`\mu = |
| 179 | + \mathbf{0}`, :math:`\sigma = 1` and :math:`\mathbf{V} = \mathbf{I}` |
| 180 | + (ie., the prior on the model coefficients **b** is a zero-mean, unit |
| 181 | + covariance Gaussian). |
| 182 | +
|
| 183 | + Parameters |
| 184 | + ---------- |
| 185 | + mu : :py:class:`ndarray <numpy.ndarray>` of shape `(M,)` or float |
| 186 | + The mean of the Gaussian prior on `b`. If a float, assume `mu` is |
| 187 | + ``np.ones(M) * mu``. Default is 0. |
| 188 | + sigma : float |
| 189 | + The square root of the scaling term for covariance of the Gaussian |
| 190 | + prior on `b`. Default is 1. |
| 191 | + V : :py:class:`ndarray <numpy.ndarray>` of shape `(N,N)` or `(N,)` or None |
| 192 | + A symmetric positive definite matrix that when multiplied |
| 193 | + element-wise by ``sigma ** 2`` gives the covariance matrix for the |
| 194 | + Gaussian prior on `b`. If a list, assume ``V = diag(V)``. If None, |
| 195 | + assume `V` is the identity matrix. Default is None. |
| 196 | + fit_intercept : bool |
| 197 | + Whether to fit an intercept term in addition to the coefficients in |
| 198 | + `b`. If True, the estimates for `b` will have `M + 1` dimensions, where |
| 199 | + the first dimension corresponds to the intercept. Default is True. |
| 200 | +
|
| 201 | + Attributes |
| 202 | + ---------- |
| 203 | + posterior : dict or None |
| 204 | + Frozen random variable for the posterior distribution :math:`P(b |
| 205 | + \mid X, \sigma^2)`. |
| 206 | + posterior_predictive : dict or None |
| 207 | + Frozen random variable for the posterior predictive distribution, |
| 208 | + :math:`P(y \mid X)`. This value is only set following a call to |
| 209 | + :meth:`numpy_ml.linear_models.BayesianLinearRegressionKnownVariance.predict`. |
| 210 | + """ # noqa: E501 |
| 211 | + # this is a placeholder until we know the dimensions of X |
| 212 | + V = 1.0 if V is None else V |
| 213 | + |
| 214 | + if isinstance(V, list): |
| 215 | + V = np.array(V) |
| 216 | + |
| 217 | + if isinstance(V, np.ndarray): |
| 218 | + if V.ndim == 1: |
| 219 | + V = np.diag(V) |
| 220 | + elif V.ndim == 2: |
| 221 | + fstr = "V must be symmetric positive definite" |
| 222 | + assert is_symmetric_positive_definite(V), fstr |
| 223 | + |
| 224 | + self.posterior = {} |
| 225 | + self.posterior_predictive = {} |
| 226 | + |
| 227 | + self.V = V |
| 228 | + self.mu = mu |
| 229 | + self.sigma = sigma |
| 230 | + self.fit_intercept = fit_intercept |
| 231 | + |
| 232 | + def fit(self, X, y): |
| 233 | + """ |
| 234 | + Compute the posterior over model parameters using the data in `X` and |
| 235 | + `y`. |
| 236 | +
|
| 237 | + Parameters |
| 238 | + ---------- |
| 239 | + X : :py:class:`ndarray <numpy.ndarray>` of shape `(N, M)` |
| 240 | + A dataset consisting of `N` examples, each of dimension `M`. |
| 241 | + y : :py:class:`ndarray <numpy.ndarray>` of shape `(N, K)` |
| 242 | + The targets for each of the `N` examples in `X`, where each target |
| 243 | + has dimension `K`. |
| 244 | + """ |
| 245 | + # convert X to a design matrix if we're fitting an intercept |
| 246 | + if self.fit_intercept: |
| 247 | + X = np.c_[np.ones(X.shape[0]), X] |
| 248 | + |
| 249 | + N, M = X.shape |
| 250 | + |
| 251 | + if is_number(self.V): |
| 252 | + self.V *= np.eye(M) |
| 253 | + |
| 254 | + if is_number(self.mu): |
| 255 | + self.mu *= np.ones(M) |
| 256 | + |
| 257 | + V = self.V |
| 258 | + mu = self.mu |
| 259 | + sigma = self.sigma |
| 260 | + |
| 261 | + V_inv = np.linalg.inv(V) |
| 262 | + L = np.linalg.inv(V_inv + X.T @ X) |
| 263 | + R = V_inv @ mu + X.T @ y |
| 264 | + |
| 265 | + mu = L @ R |
| 266 | + cov = L * sigma ** 2 |
| 267 | + |
| 268 | + # posterior distribution over b conditioned on sigma |
| 269 | + self.posterior["b"] = stats.multivariate_normal(mu, cov) |
| 270 | + |
| 271 | + def predict(self, X): |
| 272 | + """ |
| 273 | + Return the MAP prediction for the targets associated with `X`. |
| 274 | +
|
| 275 | + Parameters |
| 276 | + ---------- |
| 277 | + X : :py:class:`ndarray <numpy.ndarray>` of shape `(Z, M)` |
| 278 | + A dataset consisting of `Z` new examples, each of dimension `M`. |
| 279 | +
|
| 280 | + Returns |
| 281 | + ------- |
| 282 | + y_pred : :py:class:`ndarray <numpy.ndarray>` of shape `(Z, K)` |
| 283 | + The MAP predictions for the targets associated with the items in |
| 284 | + `X`. |
| 285 | + """ |
| 286 | + # convert X to a design matrix if we're fitting an intercept |
| 287 | + if self.fit_intercept: |
| 288 | + X = np.c_[np.ones(X.shape[0]), X] |
| 289 | + |
| 290 | + I = np.eye(X.shape[0]) # noqa: E741 |
| 291 | + mu = X @ self.posterior["b"].mean |
| 292 | + cov = X @ self.posterior["b"].cov @ X.T + I |
| 293 | + |
| 294 | + # MAP estimate for y corresponds to the mean/mode of the gaussian |
| 295 | + # posterior predictive distribution |
| 296 | + self.posterior_predictive = stats.multivariate_normal(mu, cov) |
| 297 | + return mu |
0 commit comments