Skip to content

Commit d767325

Browse files
authored
Naive Bayes | Python div-bargali#205
Naive Bayes | Python
2 parents 3aeb89d + 159cf95 commit d767325

File tree

1 file changed

+73
-0
lines changed

1 file changed

+73
-0
lines changed
Lines changed: 73 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,73 @@
1+
#!/usr/bin/env python
2+
# coding: utf-8
3+
4+
# In[16]:
5+
6+
7+
#importing required packages
8+
import pandas as pd
9+
from sklearn import preprocessing
10+
from sklearn.model_selection import train_test_split
11+
from sklearn.naive_bayes import GaussianNB
12+
from sklearn.metrics import accuracy_score
13+
from sklearn.metrics import confusion_matrix
14+
from sklearn.naive_bayes import BernoulliNB
15+
clf=BernoulliNB()
16+
17+
#loading the data
18+
dataset=pd.read_csv("C:/Users/ASUS/Downloads/train.csv")
19+
dataset.head()
20+
21+
#getting the description of the dataset
22+
dataset.describe()
23+
dataset.describe().sum()
24+
25+
#get some info about the data
26+
dataset.info()
27+
28+
#getting the amount of null values in each column
29+
dataset.isnull().sum()
30+
31+
#dropping the unimportant columns
32+
33+
dataset=dataset.drop('PassengerId', axis=1)
34+
35+
dataset=dataset.drop('Name', axis=1)
36+
37+
dataset=dataset.drop('Ticket', axis=1)
38+
39+
dataset=dataset.drop('Cabin', axis=1)
40+
41+
dataset.head()
42+
43+
#label encoding the categorical values which are of object type
44+
le=preprocessing.LabelEncoder()
45+
dataset['Sex']=le.fit_transform(dataset['Sex'])
46+
dataset['Embarked']=le.fit_transform(dataset['Embarked'])
47+
dataset.head()
48+
49+
"""this functions takes the independent variable column and trains the model after dividing the dataset into x and y
50+
and also spliting the dataset into training and testing data.This also prints the accuracy score and the confusion matrix"""
51+
52+
def navbaiyes(value):
53+
x=dataset.drop([value], axis=1)
54+
y=dataset[value]
55+
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
56+
57+
58+
y_pred= clf.fit(x_train,y_train).predict(x_test)
59+
print("The accuracy score is:")
60+
print(accuracy_score(y_test, y_pred)*100)
61+
print('--------------------------------------------')
62+
print("The confusion matrix is:")
63+
print(confusion_matrix(y_test,y_pred))
64+
65+
#Calling the function
66+
navbaiyes('Survived')
67+
68+
69+
# In[ ]:
70+
71+
72+
73+

0 commit comments

Comments
 (0)