DEV Community

Cover image for Building a Document QA System with Supavec and Gaia
Harish Kotra (he/him) for Gaia

Posted on • Originally published at hackmd.io

Building a Document QA System with Supavec and Gaia

In this article, I'll share my experience building a document-aware chat system using Supavec and Gaia, complete with code examples and practical insights.

The Challenge

Every developer who has tried to build a document Q&A system knows the pain points:

  • Complex document processing pipelines
  • Managing chunking and embeddings
  • Implementing efficient vector search
  • Maintaining context across conversations
  • Handling multiple file formats

Why Gaia + Supavec?

The breakthrough came when I discovered the power of combining two specialized tools:

  • Supavec: Handles document processing infrastructure
  • Gaia: Provides advanced language understanding

Here's a comparison of the traditional approach versus using Supavec:

// Traditional approach - complex and error-prone const processDocumentTraditional = async (file) => { const text = await extractText(file); const chunks = await splitIntoChunks(text); const embeddings = await generateEmbeddings(chunks); await storeInVectorDB(embeddings); // Plus hundreds of lines handling edge cases }; // With Supavec - clean and efficient const uploadDocument = async (file) => { const formData = new FormData(); formData.append("file", file); const response = await fetch("https://api.supavec.com/upload_file", { method: "POST", headers: { authorization: apiKey }, body: formData }); return response.json(); }; 
Enter fullscreen mode Exit fullscreen mode

System Architecture

The system consists of four main components:

  1. Frontend (React)

    • File upload interface
    • Real-time chat UI
    • Document selection
    • Response rendering
  2. Backend (Express)

    • Request orchestration
    • File handling
    • API integration
  3. Supavec Integration

    • Document processing
    • Semantic search
    • Context retrieval
  4. Gaia Integration

    • Natural language understanding
    • Response generation
    • Context synthesis

Core Implementation

Here's the chat interface that brings it all together:

export function ChatInterface({ selectedFiles }) { const [messages, setMessages] = useState([]); const handleQuestion = async (question) => { try { // Get relevant context from documents const searchResponse = await searchEmbeddings(question, selectedFiles); const context = searchResponse.documents .map(doc => doc.content) .join('\n\n'); // Generate response using context const answer = await askQuestion(question, context); setMessages(prev => [...prev, { role: 'user', content: question }, { role: 'assistant', content: answer } ]); } catch (error) { console.error('Error processing question:', error); } }; return ( <div className="chat-container"> <MessageList messages={messages} />  <QuestionInput onSubmit={handleQuestion} />  </div>  ); } 
Enter fullscreen mode Exit fullscreen mode

Why This Approach Works Better

1. Intelligent Context Retrieval

Instead of simple keyword matching, Supavec uses semantic search to find relevant document sections:

// Semantic search implementation const getRelevantContext = async (question, fileIds) => { const response = await fetch('https://api.supavec.com/embeddings', { method: 'POST', headers: { 'Content-Type': 'application/json', authorization: apiKey }, body: JSON.stringify({ query: question, file_ids: fileIds, k: 3 // Number of relevant chunks to retrieve }) }); return response.json(); }; 
Enter fullscreen mode Exit fullscreen mode

2. Natural Response Generation

Gaia doesn't just stitch together document chunks - it understands and synthesizes information:

// Example response generation const generateResponse = async (question, context) => { const response = await fetch('https://llama3b.gaia.domains/v1/chat/completions', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ messages: [ { role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' }, { role: 'user', content: `Context: ${context}\n\nQuestion: ${question}` } ] }) }); return response.json(); }; 
Enter fullscreen mode Exit fullscreen mode

Getting Started

  1. Clone the repository:
git clone https://github.com/harishkotra/gaia-supavec.git cd gaia-supavec 
Enter fullscreen mode Exit fullscreen mode
  1. Install dependencies:
# Backend cd backend npm install # Frontend cd ../frontend npm install 
Enter fullscreen mode Exit fullscreen mode
  1. Configure environment variables:
# backend/.env SUPAVEC_API_KEY=your_supavec_key GAIA_API=https://llama3b.gaia.domains/v1/chat/completions FRONTEND_URL=http://localhost:3000 # frontend/.env REACT_APP_API_URL=http://localhost:3001 
Enter fullscreen mode Exit fullscreen mode
  1. Start the development servers:
# Backend cd backend npm run dev # Frontend cd ../frontend npm start 
Enter fullscreen mode Exit fullscreen mode

Key Features

  1. Document Processing

    • PDF and text file support
    • Automatic chunking
    • Efficient indexing
  2. Search Capabilities

    • Semantic search
    • Multi-document queries
    • Relevance ranking
  3. User Interface

    • Real-time chat
    • File management
    • Response streaming
  4. Development Features

    • Hot reloading
    • Error handling
    • Request validation

Production Considerations

  1. Scaling

    • Implement caching
    • Add rate limiting
    • Configure monitoring
  2. Security

    • Input validation
    • File type restrictions
    • API key management
  3. Performance

    • Response streaming
    • Lazy loading
    • Request batching

Future Improvements

Enhanced Features

  • [ ] Conversation memory
  • [ ] More file formats
  • [ ] Batch processing

User Experience

  • [ ] Progress indicators
  • [ ] Error recovery
  • [ ] Mobile optimization

Developer Experience

  • [ ] Better documentation
  • [ ] Testing utilities
  • [ ] Deployment guides

Building a document QA system doesn't have to be complicated. By leveraging Supavec for document processing and Gaia for language understanding, we can create powerful, user-friendly systems without getting lost in implementation details. The complete code is available on GitHub, and I encourage you to try it out.

Resources


Found this helpful? Follow me on GitHub or star the repository to stay updated with new features and improvements.

Top comments (0)