In this article, I'll share my experience building a document-aware chat system using Supavec and Gaia, complete with code examples and practical insights.
The Challenge
Every developer who has tried to build a document Q&A system knows the pain points:
- Complex document processing pipelines
- Managing chunking and embeddings
- Implementing efficient vector search
- Maintaining context across conversations
- Handling multiple file formats
Why Gaia + Supavec?
The breakthrough came when I discovered the power of combining two specialized tools:
- Supavec: Handles document processing infrastructure
- Gaia: Provides advanced language understanding
Here's a comparison of the traditional approach versus using Supavec:
// Traditional approach - complex and error-prone const processDocumentTraditional = async (file) => { const text = await extractText(file); const chunks = await splitIntoChunks(text); const embeddings = await generateEmbeddings(chunks); await storeInVectorDB(embeddings); // Plus hundreds of lines handling edge cases }; // With Supavec - clean and efficient const uploadDocument = async (file) => { const formData = new FormData(); formData.append("file", file); const response = await fetch("https://api.supavec.com/upload_file", { method: "POST", headers: { authorization: apiKey }, body: formData }); return response.json(); };
System Architecture
The system consists of four main components:
-
Frontend (React)
- File upload interface
- Real-time chat UI
- Document selection
- Response rendering
-
Backend (Express)
- Request orchestration
- File handling
- API integration
-
Supavec Integration
- Document processing
- Semantic search
- Context retrieval
-
Gaia Integration
- Natural language understanding
- Response generation
- Context synthesis
Core Implementation
Here's the chat interface that brings it all together:
export function ChatInterface({ selectedFiles }) { const [messages, setMessages] = useState([]); const handleQuestion = async (question) => { try { // Get relevant context from documents const searchResponse = await searchEmbeddings(question, selectedFiles); const context = searchResponse.documents .map(doc => doc.content) .join('\n\n'); // Generate response using context const answer = await askQuestion(question, context); setMessages(prev => [...prev, { role: 'user', content: question }, { role: 'assistant', content: answer } ]); } catch (error) { console.error('Error processing question:', error); } }; return ( <div className="chat-container"> <MessageList messages={messages} /> <QuestionInput onSubmit={handleQuestion} /> </div> ); }
Why This Approach Works Better
1. Intelligent Context Retrieval
Instead of simple keyword matching, Supavec uses semantic search to find relevant document sections:
// Semantic search implementation const getRelevantContext = async (question, fileIds) => { const response = await fetch('https://api.supavec.com/embeddings', { method: 'POST', headers: { 'Content-Type': 'application/json', authorization: apiKey }, body: JSON.stringify({ query: question, file_ids: fileIds, k: 3 // Number of relevant chunks to retrieve }) }); return response.json(); };
2. Natural Response Generation
Gaia doesn't just stitch together document chunks - it understands and synthesizes information:
// Example response generation const generateResponse = async (question, context) => { const response = await fetch('https://llama3b.gaia.domains/v1/chat/completions', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ messages: [ { role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' }, { role: 'user', content: `Context: ${context}\n\nQuestion: ${question}` } ] }) }); return response.json(); };
Getting Started
- Clone the repository:
git clone https://github.com/harishkotra/gaia-supavec.git cd gaia-supavec
- Install dependencies:
# Backend cd backend npm install # Frontend cd ../frontend npm install
- Configure environment variables:
# backend/.env SUPAVEC_API_KEY=your_supavec_key GAIA_API=https://llama3b.gaia.domains/v1/chat/completions FRONTEND_URL=http://localhost:3000 # frontend/.env REACT_APP_API_URL=http://localhost:3001
- Start the development servers:
# Backend cd backend npm run dev # Frontend cd ../frontend npm start
Key Features
-
Document Processing
- PDF and text file support
- Automatic chunking
- Efficient indexing
-
Search Capabilities
- Semantic search
- Multi-document queries
- Relevance ranking
-
User Interface
- Real-time chat
- File management
- Response streaming
-
Development Features
- Hot reloading
- Error handling
- Request validation
Production Considerations
-
Scaling
- Implement caching
- Add rate limiting
- Configure monitoring
-
Security
- Input validation
- File type restrictions
- API key management
-
Performance
- Response streaming
- Lazy loading
- Request batching
Future Improvements
Enhanced Features
- [ ] Conversation memory
- [ ] More file formats
- [ ] Batch processing
User Experience
- [ ] Progress indicators
- [ ] Error recovery
- [ ] Mobile optimization
Developer Experience
- [ ] Better documentation
- [ ] Testing utilities
- [ ] Deployment guides
Building a document QA system doesn't have to be complicated. By leveraging Supavec for document processing and Gaia for language understanding, we can create powerful, user-friendly systems without getting lost in implementation details. The complete code is available on GitHub, and I encourage you to try it out.
Resources
Found this helpful? Follow me on GitHub or star the repository to stay updated with new features and improvements.
Top comments (0)