Why bother
Say you get a project that doesn't have a requirements.txt
file in it and that project has 20+ imports, meaning you need to install 20+ modules manually. Sound not that interesting.
That's when pipreqs
comes into play as a "life saver". This tool will scan all scripts/folders in the current working directory (or where you want it to look by providing a path) and installs all the found packages.
Example usage
Solution
- create virtual env
- activate it
- install
pipreqs
- tell
pipreqs
to look for files in the current folder"./"
and use--encoding utf-8
- wait until
requirements.txt
is created
- wait until
- install script dependencies from created
requirements.txt
Which results in this command:
# windows python -m venv env && \ source env/Scripts/activate && \ pip install pipreqs && \ pipreqs --encoding utf-8 "./" && \ pip install -r requirements.txt && \ pip freeze > requirements.txt
# linux python -m venv env && \ source env/source/activate && \ pip install pipreqs && \ pipreqs --encoding utf-8 "./" && \ pip install -r requirements.txt && \ pip freeze > requirements.txt
Low amount of imports example
Let's say you have a script like this:
import requests response = requests.get('https://serpapi.com/playground') print(response.html)
Big amount of imports example
The point of it is to show how all the modules install automatically without having an initial requirements.txt
file.
Here will have a bigger amount of imports:
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import scipy.stats as stats import statsmodels.api as sm import sklearn import yellowbrick import wordcloud import nltk import spacy import transformers import streamlit as st # Load and clean data data = pd.read_csv('data.csv') data.dropna(inplace=True) # Descriptive statistics print('Data Summary') print(data.describe()) # Data visualization sns.histplot(data['age'], kde=False, bins=10) plt.title('Age Distribution') plt.show() px.scatter(data, x='income', y='age', color='gender', title='Income vs. Age') # Correlation analysis corr_matrix = data.corr() sns.heatmap(corr_matrix, annot=True, cmap='coolwarm') plt.title('Correlation Matrix') plt.show() # Statistical analysis stat, p = stats.ttest_ind(data[data['gender']=='M']['income'], data[data['gender']=='F']['income']) print(f'T-test: statistic={stat}, pvalue={p}') # Machine learning X = data[['age', 'income']] y = data['gender'] model = sklearn.linear_model.LogisticRegression() model.fit(X, y) visualizer = yellowbrick.classifier.classification_report(model, X, y) visualizer.show() # Text analysis text = 'This is a sample text for text analysis' tokens = nltk.word_tokenize(text) print(f'Tokenized text: {tokens}') nlp = spacy.load('en_core_web_sm') doc = nlp(text) for token in doc: print(token.text, token.pos_) model = transformers.pipeline('sentiment-analysis') result = model(text)[0] print(f'Sentiment analysis: {result["label"]}, score={result["score"]}') # Streamlit app st.title('Data Analysis App') st.write('Data Summary') st.write(data.describe())
Generated requirements.txt
afterward:
altair==4.2.2 attrs==23.1.0 blinker==1.6.2 blis==0.7.9 cachetools==5.3.0 catalogue==2.0.8 certifi==2022.12.7 charset-normalizer==3.1.0 click==8.1.3 colorama==0.4.6 confection==0.0.4 contourpy==1.0.7 cssselect==1.2.0 cycler==0.11.0 cymem==2.0.7 decorator==5.1.1 docopt==0.6.2 entrypoints==0.4 filelock==3.12.0 fonttools==4.39.3 fsspec==2023.4.0 gitdb==4.0.10 GitPython==3.1.31 huggingface-hub==0.14.1 idna==3.4 importlib-metadata==6.6.0 Jinja2==3.1.2 jmespath==1.0.1 joblib==1.2.0 jsonschema==4.17.3 kiwisolver==1.4.4 langcodes==3.3.0 lxml==4.9.2 markdown-it-py==2.2.0 MarkupSafe==2.1.2 matplotlib==3.7.1 mdurl==0.1.2 murmurhash==1.0.9 nltk==3.8.1 numpy==1.24.3 packaging==23.1 pandas==2.0.1 parsel==1.8.1 pathy==0.10.1 patsy==0.5.3 Pillow==9.5.0 pipreqs==0.4.13 plotly==5.14.1 preshed==3.0.8 protobuf==3.20.3 pyarrow==12.0.0 pydantic==1.10.7 pydeck==0.8.1b0 Pygments==2.15.1 Pympler==1.0.1 pyparsing==3.0.9 pyrsistent==0.19.3 python-dateutil==2.8.2 pytz==2023.3 pytz-deprecation-shim==0.1.0.post0 PyYAML==6.0 regex==2023.5.4 requests==2.29.0 rich==13.3.5 scikit-learn==1.2.2 scipy==1.10.1 seaborn==0.12.2 six==1.16.0 smart-open==6.3.0 smmap==5.0.0 spacy==3.5.2 spacy-legacy==3.0.12 spacy-loggers==1.0.4 srsly==2.4.6 statsmodels==0.13.5 streamlit==1.22.0 tenacity==8.2.2 thinc==8.1.10 threadpoolctl==3.1.0 tokenizers==0.13.3 toml==0.10.2 toolz==0.12.0 tornado==6.3.1 tqdm==4.65.0 transformers==4.28.1 typer==0.7.0 typing_extensions==4.5.0 tzdata==2023.3 tzlocal==4.3 urllib3==1.26.15 validators==0.20.0 w3lib==2.1.1 wasabi==1.1.1 watchdog==3.0.0 wordcloud==1.9.1.1 yarg==0.1.9 yellowbrick==1.5 zipp==3.15.0
Current limitations
The only drawback for now, is that it doesn't recognize all packages as there're ~10+ related issues when pipreqs
didn't recognize a package.
Top comments (0)