DEV Community

Cover image for How to deploy a SpringBoot API on AWS ECS using CDKTF?
abdelino17
abdelino17

Posted on • Originally published at blog.abdelfare.me

How to deploy a SpringBoot API on AWS ECS using CDKTF?

When a Java developer asked me how to deploy their Spring Boot API on AWS ECS, I saw it as the perfect chance to dive into the latest updates on the CDKTF (Cloud Development Kit for Terraform) project.

In a previous article, I introduced CDKTF, a framework that allows you to write Infrastructure as Code (IaC) using general-purpose programming languages such as Python. Since then, CDKTF has reached its first GA release, making it the perfect time to revisit it. In this article, we’ll walk through deploying a Spring Boot API on AWS ECS using CDKTF.

Find the code of this article on my github repo.

Architecture Overview

Before diving into the implementation, let’s review the architecture we aim to deploy:

Architecture

From this diagram, we can break down the architecture into 03 layers:

  1. Network:
    • VPC
    • Public and private subnets
    • Internet Gateway
    • NAT Gateways
  2. Infrastructure:
    • Application Load Balancer (ALB)
    • Listeners
    • ECS Cluster
  3. Service Stack:
    • Target Groups
    • ECS Service
    • Task Definitions

Step 1: Containerize your Spring Boot Application

The Java API we’re deploying is available on GitHub.

It defines a simple REST API with three endpoints:

  1. /ping: Returns the string "pong". This endpoint is useful for testing the API's responsiveness. It also increments a Prometheus counter metric for monitoring.
  2. /healthcheck: Returns "ok", serving as a health check endpoint to ensure the application is running correctly. Like /ping, it updates a Prometheus counter for observability.
  3. /hello: Accepts a name query parameter (defaults to "World") and returns a personalized greeting, e.g., "Hello, [name]!". This endpoint also integrates with the Prometheus counter.

Let’s add the Dockerfile:

FROM maven:3.9-amazoncorretto-21 AS builder WORKDIR /app COPY pom.xml . COPY src src RUN mvn clean package # amazon java distribution FROM amazoncorretto:21-alpine COPY --from=builder /app/target/*.jar /app/java-api.jar EXPOSE 8080 ENTRYPOINT ["java","-jar","/app/java-api.jar"] 
Enter fullscreen mode Exit fullscreen mode

Our application is ready to be deployed!

Step 2: Set up AWS CDKTF

AWS CDKTF allows you to define and manage AWS resources using Python.

1. Prerequisites

- [**python (3.13)**](https://www.python.org/) - [**pipenv**](https://pipenv.pypa.io/en/latest/) - [**npm**](https://nodejs.org/en/) 
Enter fullscreen mode Exit fullscreen mode

2. Install CDKTF and Dependencies

Ensure you have the necessary tools by installing CDKTF and its dependencies:

$ npm install -g cdktf-cli@latest 
Enter fullscreen mode Exit fullscreen mode

This installs the cdktf CLI that allows to spin up new projects for various languages.

3. Initialize Your CDKTF Application

We can scaffold a new python project by running:

# init the project using aws provider $ mkdir samples-fargate $ cd samples-fargate && cdktf init --template=python --providers=aws 
Enter fullscreen mode Exit fullscreen mode

There are many files created by default and all the dependencies are installed.

Below is the initial main.pyfile:

#!/usr/bin/env python from constructs import Construct from cdktf import App, TerraformStack class MyStack(TerraformStack): def __init__(self, scope: Construct, id: str): super().__init__(scope, id) # define resources here  app = App() MyStack(app, "aws-cdktf-samples-fargate") app.synth() 
Enter fullscreen mode Exit fullscreen mode

Step 3: Building Layers

A stack represents a group of infrastructure resources that CDK for Terraform (CDKTF) compiles into a distinct Terraform configuration. Stacks enable separate state management for different environments within an application. To share resources across layers, we will utilize Cross-Stack references.

1. Network Layer

Add the network_stack.py file to your project

$ mkdir infra $ cd infra && touch network_stack.py 
Enter fullscreen mode Exit fullscreen mode

Add the following code to create all the network resources:

from constructs import Construct from cdktf import S3Backend, TerraformStack from cdktf_cdktf_provider_aws.provider import AwsProvider from cdktf_cdktf_provider_aws.vpc import Vpc from cdktf_cdktf_provider_aws.subnet import Subnet from cdktf_cdktf_provider_aws.eip import Eip from cdktf_cdktf_provider_aws.nat_gateway import NatGateway from cdktf_cdktf_provider_aws.route import Route from cdktf_cdktf_provider_aws.route_table import RouteTable from cdktf_cdktf_provider_aws.route_table_association import RouteTableAssociation from cdktf_cdktf_provider_aws.internet_gateway import InternetGateway class NetworkStack(TerraformStack): def __init__(self, scope: Construct, ns: str, params: dict): super().__init__(scope, ns) self.region = params["region"] # configure the AWS provider to use the us-east-1 region  AwsProvider(self, "AWS", region=self.region) # use S3 as backend  S3Backend( self, bucket=params["backend_bucket"], key=params["backend_key_prefix"] + "/network.tfstate", region=self.region, ) # create the vpc  vpc_demo = Vpc(self, "vpc-demo", cidr_block="192.168.0.0/16") # create two public subnets  public_subnet1 = Subnet( self, "public-subnet-1", vpc_id=vpc_demo.id, availability_zone=f"{self.region}a", cidr_block="192.168.1.0/24", ) public_subnet2 = Subnet( self, "public-subnet-2", vpc_id=vpc_demo.id, availability_zone=f"{self.region}b", cidr_block="192.168.2.0/24", ) # create. the internet gateway  igw = InternetGateway(self, "igw", vpc_id=vpc_demo.id) # create the public route table  public_rt = Route( self, "public-rt", route_table_id=vpc_demo.main_route_table_id, destination_cidr_block="0.0.0.0/0", gateway_id=igw.id, ) # create the private subnets  private_subnet1 = Subnet( self, "private-subnet-1", vpc_id=vpc_demo.id, availability_zone=f"{self.region}a", cidr_block="192.168.10.0/24", ) private_subnet2 = Subnet( self, "private-subnet-2", vpc_id=vpc_demo.id, availability_zone=f"{self.region}b", cidr_block="192.168.20.0/24", ) # create the Elastic IPs  eip1 = Eip(self, "nat-eip-1", depends_on=[igw]) eip2 = Eip(self, "nat-eip-2", depends_on=[igw]) # create the NAT Gateways  private_nat_gw1 = NatGateway( self, "private-nat-1", subnet_id=public_subnet1.id, allocation_id=eip1.id, ) private_nat_gw2 = NatGateway( self, "private-nat-2", subnet_id=public_subnet2.id, allocation_id=eip2.id, ) # create Route Tables  private_rt1 = RouteTable(self, "private-rt1", vpc_id=vpc_demo.id) private_rt2 = RouteTable(self, "private-rt2", vpc_id=vpc_demo.id) # add default routes to tables  Route( self, "private-rt1-default-route", route_table_id=private_rt1.id, destination_cidr_block="0.0.0.0/0", nat_gateway_id=private_nat_gw1.id, ) Route( self, "private-rt2-default-route", route_table_id=private_rt2.id, destination_cidr_block="0.0.0.0/0", nat_gateway_id=private_nat_gw2.id, ) # associate routes with subnets  RouteTableAssociation( self, "public-rt-association", subnet_id=private_subnet2.id, route_table_id=private_rt2.id, ) RouteTableAssociation( self, "private-rt1-association", subnet_id=private_subnet1.id, route_table_id=private_rt1.id, ) RouteTableAssociation( self, "private-rt2-association", subnet_id=private_subnet2.id, route_table_id=private_rt2.id, ) # terraform outputs  self.vpc_id = vpc_demo.id self.public_subnets = [public_subnet1.id, public_subnet2.id] self.private_subnets = [private_subnet1.id, private_subnet2.id] 
Enter fullscreen mode Exit fullscreen mode

Then, edit the main.py file:

#!/usr/bin/env python from constructs import Construct from cdktf import App, TerraformStack from infra.network_stack import NetworkStack ENV = "dev" AWS_REGION = "us-east-1" BACKEND_S3_BUCKET = "blog.abdelfare.me" BACKEND_S3_KEY = f"{ENV}/cdktf-samples" class MyStack(TerraformStack): def __init__(self, scope: Construct, id: str): super().__init__(scope, id) # define resources here  app = App() MyStack(app, "aws-cdktf-samples-fargate") network = NetworkStack( app, "network", { "region": AWS_REGION, "backend_bucket": BACKEND_S3_BUCKET, "backend_key_prefix": BACKEND_S3_KEY, }, ) app.synth() 
Enter fullscreen mode Exit fullscreen mode

Generate the terraform configuration files by running the following command:

$ cdktf synth 
Enter fullscreen mode Exit fullscreen mode

Deploy the network stack with this:

$ cdktf deploy network 
Enter fullscreen mode Exit fullscreen mode

Network Deployment

Our VPC is ready as shown in the image below:

Network Map

2. Infrastructure Layer

Add the infra_stack.py file to your project

$ cd infra && touch infra_stack.py 
Enter fullscreen mode Exit fullscreen mode

Add the following code to create all the infrastructure resources:

from constructs import Construct from cdktf import S3Backend, TerraformStack from cdktf_cdktf_provider_aws.provider import AwsProvider from cdktf_cdktf_provider_aws.ecs_cluster import EcsCluster from cdktf_cdktf_provider_aws.lb import Lb from cdktf_cdktf_provider_aws.lb_listener import ( LbListener, LbListenerDefaultAction, LbListenerDefaultActionFixedResponse, ) from cdktf_cdktf_provider_aws.security_group import ( SecurityGroup, SecurityGroupIngress, SecurityGroupEgress, ) class InfraStack(TerraformStack): def __init__(self, scope: Construct, ns: str, network: dict, params: dict): super().__init__(scope, ns) self.region = params["region"] # Configure the AWS provider to use the us-east-1 region  AwsProvider(self, "AWS", region=self.region) # use S3 as backend  S3Backend( self, bucket=params["backend_bucket"], key=params["backend_key_prefix"] + "/load_balancer.tfstate", region=self.region, ) # create the ALB security group  alb_sg = SecurityGroup( self, "alb-sg", vpc_id=network["vpc_id"], ingress=[ SecurityGroupIngress( protocol="tcp", from_port=80, to_port=80, cidr_blocks=["0.0.0.0/0"] ) ], egress=[ SecurityGroupEgress( protocol="-1", from_port=0, to_port=0, cidr_blocks=["0.0.0.0/0"] ) ], ) # create the ALB  alb = Lb( self, "alb", internal=False, load_balancer_type="application", security_groups=[alb_sg.id], subnets=network["public_subnets"], ) # create the LB Listener  alb_listener = LbListener( self, "alb-listener", load_balancer_arn=alb.arn, port=80, protocol="HTTP", default_action=[ LbListenerDefaultAction( type="fixed-response", fixed_response=LbListenerDefaultActionFixedResponse( content_type="text/plain", status_code="404", message_body="Could not find the resource you are looking for", ), ) ], ) # create the ECS cluster  cluster = EcsCluster(self, "cluster", name=params["cluster_name"]) self.alb_arn = alb.arn self.alb_listener = alb_listener.arn self.alb_sg = alb_sg.id self.cluster_id = cluster.id 
Enter fullscreen mode Exit fullscreen mode

Edit the main.py file:

... CLUSTER_NAME = "cdktf-samples" ... infra = InfraStack( app, "infra", { "vpc_id": network.vpc_id, "public_subnets": network.public_subnets, }, { "region": AWS_REGION, "backend_bucket": BACKEND_S3_BUCKET, "backend_key_prefix": BACKEND_S3_KEY, "cluster_name": CLUSTER_NAME, }, ) ... 
Enter fullscreen mode Exit fullscreen mode

Deploy the infra stack with this:

$ cdktf deploy network infra 
Enter fullscreen mode Exit fullscreen mode

Note the DNS name of the ALB, we will use it later.

ALB DNS

3. Service Layer

Add the service_stack.py file to your project

$ mkdir apps $ cd apps && touch service_stack.py 
Enter fullscreen mode Exit fullscreen mode

Add the following code to create all the ECS Service resources:

from constructs import Construct import json from cdktf import S3Backend, TerraformStack, Token, TerraformOutput from cdktf_cdktf_provider_aws.provider import AwsProvider from cdktf_cdktf_provider_aws.ecs_service import ( EcsService, EcsServiceLoadBalancer, EcsServiceNetworkConfiguration, ) from cdktf_cdktf_provider_aws.ecr_repository import ( EcrRepository, EcrRepositoryImageScanningConfiguration, ) from cdktf_cdktf_provider_aws.ecr_lifecycle_policy import EcrLifecyclePolicy from cdktf_cdktf_provider_aws.ecs_task_definition import ( EcsTaskDefinition, ) from cdktf_cdktf_provider_aws.lb_listener_rule import ( LbListenerRule, LbListenerRuleAction, LbListenerRuleCondition, LbListenerRuleConditionPathPattern, ) from cdktf_cdktf_provider_aws.lb_target_group import ( LbTargetGroup, LbTargetGroupHealthCheck, ) from cdktf_cdktf_provider_aws.security_group import ( SecurityGroup, SecurityGroupIngress, SecurityGroupEgress, ) from cdktf_cdktf_provider_aws.cloudwatch_log_group import CloudwatchLogGroup from cdktf_cdktf_provider_aws.data_aws_iam_policy_document import ( DataAwsIamPolicyDocument, ) from cdktf_cdktf_provider_aws.iam_role import IamRole from cdktf_cdktf_provider_aws.iam_role_policy_attachment import IamRolePolicyAttachment class ServiceStack(TerraformStack): def __init__( self, scope: Construct, ns: str, network: dict, infra: dict, params: dict ): super().__init__(scope, ns) self.region = params["region"] # Configure the AWS provider to use the us-east-1 region  AwsProvider(self, "AWS", region=self.region) # use S3 as backend  S3Backend( self, bucket=params["backend_bucket"], key=params["backend_key_prefix"] + "/" + params["app_name"] + ".tfstate", region=self.region, ) # create the service security group  svc_sg = SecurityGroup( self, "svc-sg", vpc_id=network["vpc_id"], ingress=[ SecurityGroupIngress( protocol="tcp", from_port=params["app_port"], to_port=params["app_port"], security_groups=[infra["alb_sg"]], ) ], egress=[ SecurityGroupEgress( protocol="-1", from_port=0, to_port=0, cidr_blocks=["0.0.0.0/0"] ) ], ) # create the service target group  svc_tg = LbTargetGroup( self, "svc-target-group", name="svc-tg", port=params["app_port"], protocol="HTTP", vpc_id=network["vpc_id"], target_type="ip", health_check=LbTargetGroupHealthCheck(path="/ping", matcher="200"), ) # create the service listener rule  LbListenerRule( self, "alb-rule", listener_arn=infra["alb_listener"], action=[LbListenerRuleAction(type="forward", target_group_arn=svc_tg.arn)], condition=[ LbListenerRuleCondition( path_pattern=LbListenerRuleConditionPathPattern(values=["/*"]) ) ], ) # create the ECR repository  repo = EcrRepository( self, params["app_name"], image_scanning_configuration=EcrRepositoryImageScanningConfiguration( scan_on_push=True ), image_tag_mutability="MUTABLE", name=params["app_name"], ) EcrLifecyclePolicy( self, "this", repository=repo.name, policy=json.dumps( { "rules": [ { "rulePriority": 1, "description": "Keep last 10 images", "selection": { "tagStatus": "tagged", "tagPrefixList": ["v"], "countType": "imageCountMoreThan", "countNumber": 10, }, "action": {"type": "expire"}, }, { "rulePriority": 2, "description": "Expire images older than 3 days", "selection": { "tagStatus": "untagged", "countType": "sinceImagePushed", "countUnit": "days", "countNumber": 3, }, "action": {"type": "expire"}, }, ] } ), ) # create the service log group  service_log_group = CloudwatchLogGroup( self, "svc_log_group", name=params["app_name"], retention_in_days=1, ) ecs_assume_role = DataAwsIamPolicyDocument( self, "assume_role", statement=[ { "actions": ["sts:AssumeRole"], "principals": [ { "identifiers": ["ecs-tasks.amazonaws.com"], "type": "Service", }, ], }, ], ) # create the service execution role  service_execution_role = IamRole( self, "service_execution_role", assume_role_policy=ecs_assume_role.json, name=params["app_name"] + "-exec-role", ) IamRolePolicyAttachment( self, "ecs_role_policy", policy_arn="arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy", role=service_execution_role.name, ) # create the service task role  service_task_role = IamRole( self, "service_task_role", assume_role_policy=ecs_assume_role.json, name=params["app_name"] + "-task-role", ) # create the service task definition  task = EcsTaskDefinition( self, "svc-task", family="service", network_mode="awsvpc", requires_compatibilities=["FARGATE"], cpu="256", memory="512", task_role_arn=service_task_role.arn, execution_role_arn=service_execution_role.arn, container_definitions=json.dumps( [ { "name": "svc", "image": f"{repo.repository_url}:latest", "networkMode": "awsvpc", "healthCheck": { "Command": ["CMD-SHELL", "echo hello"], "Interval": 5, "Timeout": 2, "Retries": 3, }, "portMappings": [ { "containerPort": params["app_port"], "hostPort": params["app_port"], } ], "logConfiguration": { "logDriver": "awslogs", "options": { "awslogs-group": service_log_group.name, "awslogs-region": params["region"], "awslogs-stream-prefix": params["app_name"], }, }, } ] ), ) # create the ECS service  EcsService( self, "ecs_service", name=params["app_name"] + "-service", cluster=infra["cluster_id"], task_definition=task.arn, desired_count=params["desired_count"], launch_type="FARGATE", force_new_deployment=True, network_configuration=EcsServiceNetworkConfiguration( subnets=network["private_subnets"], security_groups=[svc_sg.id], ), load_balancer=[ EcsServiceLoadBalancer( target_group_arn=svc_tg.id, container_name="svc", container_port=params["app_port"], ) ], ) TerraformOutput( self, "ecr_repository_url", description="url of the ecr repo", value=repo.repository_url, ) 
Enter fullscreen mode Exit fullscreen mode

Update the main.py (for the last time 😁):

... java_api = ServiceStack( app, "java_api", { "vpc_id": network.vpc_id, "private_subnets": network.private_subnets, }, { "alb_sg": infra.alb_sg, "alb_listener": infra.alb_listener, "cluster_id": infra.cluster_id, }, { "region": AWS_REGION, "backend_bucket": BACKEND_S3_BUCKET, "backend_key_prefix": BACKEND_S3_KEY, "app_name": "java-api", "app_port": 8080, "desired_count": 1, }, ) ... 
Enter fullscreen mode Exit fullscreen mode

Deploy the service stack with this:

$ cdktf deploy network infra service 
Enter fullscreen mode Exit fullscreen mode

Here we go!

We successfully created all the resources to deploy a new service on AWS ECS Fargate.

Run the following to get the list of your stacks

$ cdktf list 
Enter fullscreen mode Exit fullscreen mode

Stack List

Step 4: Github Actions Workflow

To automate deployments, let’s integrate a GitHub Actions workflow to our java-api. After enabling Github Actions, setting the secrets and variables for your repository, create the .github/workflows/deploy.yml file and add the content below:

name: Java API deployment on: workflow_dispatch: push: branches: - main pull_request: types: - opened - reopened branches: - main concurrency: group: ${{ github.workflow }}-${{ github.ref }} cancel-in-progress: true jobs: test: name: Build job runs-on: ubuntu-latest # concurrency: # group: ${{ github.job }} steps: - name: Checkout code uses: actions/checkout@v4 - name: Set up JDK 21 uses: actions/setup-java@v4 with: distribution: corretto java-version: 21 - name: Build with Maven run: mvn clean package build: runs-on: ubuntu-latest needs: test steps: - name: Checkout uses: actions/checkout@v4 - name: Set up QEMU uses: docker/setup-qemu-action@v3 - name: Set up Docker Buildx uses: docker/setup-buildx-action@v3 - name: Configure AWS credentials uses: aws-actions/configure-aws-credentials@v4 with: aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }} aws-region: ${{ vars.AWS_REGION }} - name: Login to Amazon ECR id: login-ecr uses: aws-actions/amazon-ecr-login@v2 - name: Build, tag, and push image to Amazon ECR id: build-image env: ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }} IMAGE_TAG: ${{ github.sha }} IMAGE_NAME: ${{ vars.IMAGE_NAME }} run: | # Build a docker container and push it to ECR so that it can be deployed to ECS. docker build -t $ECR_REGISTRY/$IMAGE_NAME:$IMAGE_TAG . docker push $ECR_REGISTRY/$IMAGE_NAME:$IMAGE_TAG echo "image=$ECR_REGISTRY/$IMAGE_NAME:$IMAGE_TAG" >> $GITHUB_OUTPUT - name: Fill in the new image ID in the Amazon ECS task definition id: task-def uses: aws-actions/amazon-ecs-render-task-definition@v1 with: task-definition-arn: ${{ vars.TASK_DEFINITION }} container-name: ${{ vars.CONTAINER_NAME }} image: ${{ steps.build-image.outputs.image }} - name: Deploy Amazon ECS task definition uses: aws-actions/amazon-ecs-deploy-task-definition@v2 with: task-definition: ${{ steps.task-def.outputs.task-definition }} service: ${{ vars.SERVICE_NAME }} cluster: ${{ vars.CLUSTER_NAME }} wait-for-service-stability: true 
Enter fullscreen mode Exit fullscreen mode

Our workflow is working well:

Github Actions

The service was successfully deployed as shown in the image below:

ECS Service

Step 5: Validate the Deployment

Test your deployment using the following script (replace the ALB URL with yours):

ALB_FQDN="tf-lb-20250118223346384400000002-528284851.us-east-1.elb.amazonaws.com" until curl -Is --max-time 5 http://$ALB_FQDN/ping | grep "HTTP/1.1 200" >/dev/null 2>&1 do echo "Waiting for ALB to serve traffic of java-api (/ping)..." sleep 5 done printf "\nALB is now ready to serve traffic:\n" printf "http://$ALB_FQDN\n" 
Enter fullscreen mode Exit fullscreen mode

The ALB is now ready to serve traffic!

Final Thoughts

By leveraging AWS CDKTF, we can write clean, maintainable IaC code using Python. This approach simplifies deploying containerized applications like a Spring Boot API on AWS ECS Fargate.

CDKTF’s flexibility, combined with Terraform’s robust capabilities, makes it an excellent choice for modern cloud deployments.

While the CDKTF project offers many interesting features for infrastructure management, I have to admit that I find it somewhat too verbose at times.

Do you have any experience with CDKTF? Have you used it in production?

Feel free to share your experience with us.

Top comments (0)